1000 resultados para composite femur
Resumo:
Adsorption-based processes are widely used in the treatment of dilute metal-bearing wastewaters. The development of versatile, low-cost adsorbents is the subject of continuing interest. This paper examines the preparation, characterization and performance of a micro-scale composite adsorbent composed of silica gel (15.9 w/w%), calcium silicate hydrate gel (8.2 w/w%) and calcite (75.9 w/w%), produced by the accelerated carbonation of tricalcium silicate (C(3)S, Ca(3)SiO(5)). The Ca/Si ratio of calcium silicate hydrate gel (C-S-H) was determined at 0.12 (DTA/TG), 0.17 ((29)Si solid-state MAS/NMR) and 0.18 (SEM/EDS). The metals-retention capacity for selected Cu(II), Pb(II), Zn(II) and Cr(III) was determined by batch and column sorption experiments utilizing nitrate solutions. The effects of metal ion concentration, pH and contact time on binding ability was investigated by kinetic and equilibrium adsorption isotherm studies. The adsorption capacity for Pb(II), Cr(III), Zn(II) and Cu(II) was found to be 94.4 mg/g, 83.0 mg/g, 52.1 mg/g and 31.4 mg/g, respectively. It is concluded that the composite adsorbent has considerable potential for the treatment of industrial wastewater containing heavy metals.
Resumo:
The water sorption and desorption behaviour of three commercial polyacid-modified composite resins used in clinical dentistry have been studied in detail. Cured specimens of each material were subjected to two successive water uptake cycles in an atmosphere of 93% relative humidity, with one intervening desorption cycle in a desiccating atmosphere over concentrated sulfuric acid. Specimens were found to absorb and desorb water according Fick's law until Mt/M(infinity) values of approximately 0.5. Diffusion rates for uptake varied between cycles, ranging from 2.37-4.53 x 10(-9 )cm(2) s(-1) for 1st cycle to 0.85-2.72 x 10(-8 )cm(2 )s(-1) for 2nd cycle. Desorption rates were similar to those for 2nd cycle sorption, and ranged from 0.86 to 5.47 x 10(-8 )cm(2 )s(-1). Equilibration times for 1st cycle water uptake were greater than for 2nd cycle sorption and for desorption and overall the behaviour of polyacid-modified composites in a high humidity atmosphere was similar to that of conventional composites in water. It is concluded that the hydrophilic components of the former do not bring about an enhanced rate of water transport.
Resumo:
OBJECTIVES: This paper describes the chemistry and properties of polyacid-modified composite resins ("compomers") designed for use in clinical dentistry, and reviews the literature in this area. METHODS: Information has been obtained from over 50 published articles appearing in the dental and biomaterials literature, with studies being principally identified through MedLine. RESULTS: Published work shows that polyacid-modified composite resins constitute a discrete class of polymeric repair material for use in dentistry. Their distinction is that they contain hydrophilic components, and these cause water to be drawn into the material following cure. This triggers an acid-base reaction, and gives the materials certain clinically-desirable properties (fluoride release, buffering capability) that are also associated with glass-ionomer cements. The water uptake leads to a decline in certain, though not all, physical properties. However, clinical studies have shown these materials to perform acceptably in a variety of applications (Class I, Class II and Class V cavities, as fissure sealants and as orthodontic band cements), especially in children's teeth. CONCLUSIONS/SIGNIFICANCE: Polyacid-modified composite resins constitute a versatile class of dental repair material, whose bioactivity confers clinical advantages, and which are particularly useful in children's dentistry.
Resumo:
This paper reviews the literature on fluoride-releasing composite resins. These materials have been available for several years, with fluoride release being achieved by adding soluble or sparingly soluble fluoride salts to the formulation. However, this has been shown to lead to a gradual reduction in the mechanical properties. These materials are also unable to undergo "fluoride recharge". Experimental fluoride-releasing composites have been prepared which supply fluoride by alternative mechanisms that do have the potential for fluoride recharge but, so far, these materials have not been made available for use in patients. Fluoride-releasing composite resins have been shown to be effective in preventing secondary caries in vitro. They have also been shown to reduce the size and depth of carious lesions. However, information on their clinical effectiveness is limited and the paper concludes that there is an urgent need for research on this topic.
Resumo:
Novel techniques have been developed for increasing the value of cloud-affected sequences of Advanced Very High Resolution Radiometer (AVHRR) sea-surface temperature (SST) data and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean colour data for visualising dynamic physical and biological oceanic processes such as fronts, eddies and blooms. The proposed composite front map approach is to combine the location, strength and persistence of all fronts observed over several days into a single map, which allows intuitive interpretation of mesoscale structures. This method achieves a synoptic view without blurring dynamic features, an inherent problem with conventional time-averaging compositing methods. Objective validation confirms a significant improvement in feature visibility on composite maps compared to individual front maps. A further novel aspect is the automated detection of ocean colour fronts, correctly locating 96% of chlorophyll fronts in a test data set. A sizeable data set of 13,000 AVHRR and 1200 SeaWiFS scenes automatically processed using this technique is applied to the study of dynamic processes off the Iberian Peninsula such as mesoscale eddy generation, and many additional applications are identified. Front map animations provide a unique insight into the evolution of upwelling and eddies.
Resumo:
The oceanographic drivers of marine vertebrate habitat use are poorly understood yet fundamental to our knowledge of marine ecosystem functioning. Here, we use composite front mapping and high-resolution GPS tracking to determine the significance of mesoscale oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus bassanus. We tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used residence time to identify area-restricted search (ARS) behaviour. Composite front maps identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales—(i) contemporaneous fronts and (ii) seasonally persistent frontal zones. Using generalized additive models (GAMs), with generalized estimating equations (GEE-GAMs) to account for serial autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, seasonally persistent frontal zones (GAMs). Our results provide proof of concept that composite front mapping is a useful tool for studying the influence of oceanographic features on animal movements. Moreover, we highlight that frontal persistence is a crucial element of the formation of pelagic foraging hotspots for mobile marine vertebrates.
Resumo:
First-order time remaining until a moving observer will pass an environmental element is optically specified in two different ways. The specification provided by global tau (based on the pattern of change of angular bearing) requires that the element is stationary and that the direction of motion is accurately detected, whereas the specification provided by composite tau (based on the patterns of change of optical size and optical distance) does not require either of these. We obtained converging evidence,for our hypothesis. that observers are sensitive to composite tau in four experiments involving, relative judgments of, time to, passage with forced-choice methodology. Discrimination performance was enhanced in the presence of a local expansion component, while being unaffected when the detection of the direction of heading was impaired. Observers relied on the information carried in composite tau rather than on the information carried in its constituent components. Finally, performance was similar under conditions of observer motion and conditions of object motion. Because composite tau specifies first-order time remaining for a large number of situations, the different ways in which it may be detected are discussed.
Resumo:
This paper presents the results of an experimental study (the ultimate load capacity of composite metal decking/concrete floor slabs. Full-scale in situ testing of composite floor slabs was carried out in the Building Research Establishment's Large Building Test Facility (LBTF) at Cardington. A parallel laboratory test programme, which compared the behaviour of composite floor slabs strips, also carried out at Queen's University Belfast (QUB). Articular attention was paid to the contribution of compressive membrane action to the load carrying capacity. The results of both test programmes were compared with predictions by yield line theory and a theoretical prediction method in which the amount of horizontal restraint mid be assessed. The full-scale tests clearly demon-wed the significant contribution of compressive membrane effects to the load capacity of interior floor panels with a lesser contribution to edge/corner panels.