983 resultados para collision-induced
Resumo:
The following points are argued: (i) there are two independent kinds of interaction on interfaces, i.e. the interaction between phases and the collision interaction, and the jump relations on interfaces can accordingly be resolved; (ii) the stress in a particle can also be divided into background stress and collision stress corresponding to the two kinds of interaction on interfaces respectively; (iii) the collision stress, in fact, has no jump on interface, so the averaged value of its derivative is equal to the derivative of its averaged value; (iv) the stress of solid phase in the basic equations for two\|phase flow should include the collision stress, while the stress in the expression of the inter\|phase force contains the background one only. Based on the arguments, the strict method for deriving the equations for two\|phase flow developed by Drew, Ishii et al. is generalized to the dense two\|phase flow, which involves the effect of collision stress.
Resumo:
Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly governed by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.
Resumo:
Most of the existing researches either focus on vortex-induced vibrations (VIVs) of a pipeline near a rigid boundary, or on seabed scour around a fixed pipeline. In this study, the coupling effects between pipeline vibration and sand scour are investigated experimentally. Experimental results indicate that there often exist two phases in the process of sand scouring around the pipeline with an initial embedment, i.e. Phase I: scour beneath pipe without VIV, and Phase II: scour with VIV of pipe. During Phase II, the amplitude of pipe vibration gets larger and its frequency gets smaller while the sand beneath the pipe is being scoured, and finally the pipe vibration and sand scour get into an equilibrium state. This indicates that sand scouring has an influence upon not only the amplitude of pipe vibration but also its frequency. Moreover, the equilibrium scour depth decreases with increasing initial gap-to-diameter ratio for both the fixed pipes and vibrating pipes. For a given value of initial gapto- diameter ratio (e0/D), the vibrating pipe may induce a deeper scour hole than the fixed pipe in the examined range of initial gap-to-diameter ratios (−0.25 < e0/D < 0.75).
Resumo:
In this paper a thermodynamic constitutive model is developed for stress induced phase transformation in single crystalline and polycrystalline shape memory alloys (SMAs). Volume fractions of different martensite variants are chosen as internal variables to describe the evolution of microstructure state in the material. This model is then used in prediction the transformation behavior of a SMA (Cu-Al-Zn-Mn) under complex thermomechanical load (including complete and incomplete transformation in mechanical cycling, and proportional/non-proportional loading). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model A test model which can be tested in the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined. The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.
Resumo:
The existing Det Norske Veritas DNV Recommended Practice RP E305 for pipeline on-bottom stability is mainly based on the pipe–soil interaction model reported by Wagner et al. in 1987, and the wake model reported by Lambrakos et al. in 1987, to calculate the soil resistance and the hydrodynamic forces upon pipeline, respectively. Unlike the methods in the DNV Practice, in this paper, an improved analysis method is proposed for the on-bottom stability of a submarine pipeline, which is based on the relationships between Um/ gD 0.5 and Ws / D2 for various restraint conditions obtained by the hydrodynamic loading experiments, taking into account the coupling effects between wave, pipeline, and sandy seabed. The analysis procedure is illustrated with a detailed flow chart. A comparison is made between the submerged weights of pipeline predicted with the DNV Practice and those with the new method. The proposed analysis method may provide a helpful tool for the engineering practice of pipeline on-bottom stability design.
Resumo:
利用自行研制的含热传导、冲击动力学大、变形有限元程序,模拟了小尺寸梁在脉冲激光加热条件下的变形过程。在此基础上,利用商用程序模拟了冷却及残余应力的产生,研究了激光参数(强度及分布)等对于微弯曲的影响。数值模拟结果与文献中的实验观察相吻合。