1000 resultados para cold spray


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microencapsulation can be an alternative to minimize lycopene instability. Thus, the aim of this study was to microencapsulate lycopene by spray drying, using a modified starch (Capsul (R)) as an encapsulating agent, and to assess the functionality of the capsules applying them in cake. The quantity of lycopene was varied at 5, 10 and 15% in a solution containing 30% of solids in order to obtain the microcapsules. These microcapsules were evaluated as to encapsulation efficiency and morphology and then submitted to a stability test and applied in cakes. Encapsulation efficiency values varied between 21 and 29%. The microcapsules had a rounded outer surface with the formation of concavities and they varied in size. The stability test revealed that microencapsulation offered greater protection to lycopene compared to its free form and it was observed that the microcapsules were able to release pigment and color the studied food system in a homogenous manner. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brown adipose tissue (BAT) is predominantly regulated by the sympathetic nervous system (SNS) and the adrenergic receptor signaling pathway. Knowing that a mouse with triple beta-receptor knockout (KO) is cold intolerant and obese, we evaluated the independent role played by the beta(1) isoform in energy homeostasis. First, the 30 min i.v. infusion of norepinephrine (NE) or the beta(1) selective agonist dobutamine (DB) resulted in similar interscapular BAT (iBAT) thermal response in WT mice. Secondly, mice with targeted disruption of the beta(1) gene (KO of beta(1) adrenergic receptor (beta 1KO)) developed hypothermia during cold exposure and exhibited decreased iBAT thermal response to NE or DB infusion. Thirdly, when placed on a high-fat diet (HFD; 40% fat) for 5 weeks, beta 1KO mice were more susceptible to obesity than WT controls and failed to develop diet-induced thermogenesis as assessed by BAT Ucp1 mRNA levels and oxygen consumption. Furthermore, beta 1KO mice exhibited fasting hyperglycemia and more intense glucose intolerance, hypercholesterolemia, and hypertriglyceridemia when placed on the HFD, developing marked non-alcoholic steatohepatitis. In conclusion, the beta(1) signaling pathway mediates most of the SNS stimulation of adaptive thermogenesis. Journal of Endocrinology (2012) 214, 359-365

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed at evaluating the spray congealing method for the production of microparticles of carbamazepine combined with a polyoxylglyceride carrier. In addition, the influence of the spray congealing conditions on the improvement of drug solubility was investigated using a three-factor, three-level Box-Behnken design. The factors studied were the cooling air flow rate, atomizing pressure, and molten dispersion feed rate. Dependent variables were the yield, solubility, encapsulation efficiency, particle size, water activity, and flow properties. Statistical analysis showed that only the yield was affected by the factors studied. The characteristics of the microparticles were evaluated using X-ray powder diffraction, scanning electron microscopy, differential scanning calorimetry, and hot-stage microscopy. The results showed a spherical morphology and changes in the crystalline state of the drug. The microparticles were obtained with good yields and encapsulation efficiencies, which ranged from 50 to 80% and 99.5 to 112%, respectively. The average size of the microparticles ranged from 17.7 to 39.4 mu m, the water activities were always below 0.5, and flowability was good to moderate. Both the solubility and dissolution rate of carbamazepine from the spray congealed microparticles were remarkably improved. The carbamazepine solubility showed a threefold increase and dissolution profile showed a twofold increase after 60 min compared to the raw drug. The Box-Behnken fractional factorial design proved to be a powerful tool to identify the best conditions for the manufacture of solid dispersion microparticles by spray congealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to obtain microparticles of hydrochlorothiazide, a diuretic drug that practically insoluble in water, by spray drying and to investigate the influence of process parameters using a three-level, three-factor Box-Behnken design. Process yields, moisture content, particle size, flowability, and solubility were used to evaluate the spray-dried microparticles. The data were analyzed by response surface methodology using analysis of variance. The independent variables studied were outlet temperature, atomization pressure, and drug content. The formulations were prepared using polyvinylpyrrolidone and colloidal silicon dioxide as the hydrophilic carrier and drying aid, respectively. The microparticle yield ranged from 18.15 to 59.02% and resulted in adequate flow (17 to 32 degrees), moisture content between 2.52 to 6.18%, and mean particle size from 45 to 59 mu m. The analysis of variance showed that the factors studied influenced the yields, moisture content, angle of repose, and solubility. Thermal analysis and X-ray diffractometry evidenced no drug interactions or chemical modifications. Photomicrographs obtained by scanning electron microscopy showed spherical particles. The solubility and dissolution rates of hydrochlorothiazide were remarkably improved when compared with pure drug. Therefore, the results confirmed the high potential of the spray-drying technique to obtain microparticulate hydrochlorothiazide with enhanced pharmaceutical and dissolution properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to produce and evaluate solid lipid microparticles containing Bifidobacterium lactis or Lactobacillus acidophilus. Survival assays were conducted to evaluate the resistance of the probiotics to spray-chilling process, their resistance to simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) and their stability during 90 d of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. lactis were resistant to SGF and SIF. The microencapsulation, however, provided protection for L. acidophilus against SGF and SIF. The free and encapsulated microorganisms lost their viability when they were stored at 37 degrees C. However, promising results were obtained when refrigerated and frozen storage was applied. The study indicates that spray-chilling using fat as carrier can be considered an innovative technology and matrix, respectively, for the protection, application and delivery of probiotics. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d + Au and p + p collisions at root S-NN = 200 GeV in the transverse-momentum range 0.85 <= p(T)(e) <= 8.5 GeV/c. In central d + Au collisions, the nuclear modification factor R-dA at 1.5 < p(T) < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p + p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi(0) and heavy-flavor-electron nuclear modification factors R-AA. DOI: 10.1103/PhysRevLett.109.242301

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is currently a strong interest in mirrorless lasing systems(1), in which the electromagnetic feedback is provided either by disorder (multiple scattering in the gain medium) or by order (multiple Bragg reflection). These mechanisms correspond, respectively, to random lasers(2) and photonic crystal lasers(3). The crossover regime between order and disorder, or correlated disorder, has also been investigated with some success(4-6). Here, we report one-dimensional photonic-crystal lasing (that is, distributed feedback lasing(7,8)) with a cold atom cloud that simultaneously provides both gain and feedback. The atoms are trapped in a one-dimensional lattice, producing a density modulation that creates a strong Bragg reflection with a small angle of incidence. Pumping the atoms with auxiliary beams induces four-wave mixing, which provides parametric gain. The combination of both ingredients generates a mirrorless parametric oscillation with a conical output emission, the apex angle of which is tunable with the lattice periodicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon cooperative absorption is common in solid-state physics. In a sample of trapped cold atoms, this effect may open up new possibilities for the study of nonlinear effects. The experiment described herein starts with two colliding Na atoms in the S hyperfine ground state. The pair absorb two photons, resulting in both a P-1/2 and a P-3/2 atom. This excitation is observed by ionization using an external light source. A simple model that considers only dipole-dipole interactions between the atoms allows us to understand the basic features observed in the experimental results. Both the pair of generated atoms and the photons originating from their decay are correlated and may have interesting applications that remain to be explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active pharmaceutical ingredients have very strict quality requirements; minor changes in the physical and chemical properties of pharmaceuticals can adversely affect the dissolution rate and therefore the bioavailability of a given drug. Accordingly, the aim of the present study was to investigate the effect of spray drying on the physical and in vitro dissolution properties of four different active pharmaceutical ingredients, namely carbamazepine, indomethacin, piroxicam, and nifedipine. Each drug was dispersed in a solution of ethanol and water (70:30) and subjected to single-step spray drying using similar operational conditions. A complete characterization of the spray-dried drugs was performed via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), particle size distribution analysis, solubility analysis, and an in vitro dissolution study. The results from the thermal analysis and X-ray diffraction showed that, except for carbamazepine, no chemical modifications occurred as a result of spray drying. Moreover, the particle size distribution of all the spray-dried drugs significantly decreased. In addition, SEM images showed that most of the particles had an irregular shape. There was no significant improvement in the solubility of the spray-dried drugs compared with the unprocessed compounds; however, in general, the dissolution rates of the spray-dried drugs showed a remarkable improvement over their non-spray-dried counterparts. Therefore, the results from this study demonstrate that a single spray-drying step may lead to changes in the physical properties and dissolution characteristics of drugs and thus improve their therapeutic action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 7.4 mm thick strip of 3003 aluminum alloy produced by the industrial twin-roll casting (TRC) process was homogenized at 500 °C for 12 hours, after which it was cold rolled in two conditions: 1) to reduce the strip's thickness by 67%, and 2) to reduce it by 91%. The alloy was annealed at 400 °C for 1 hour in both conditions. The results revealed that a rotated cube texture, the {001}<110> component, predominated in the as-cast condition and was transformed into brass, copper and S type textures during the cold rolling process. There was practically no difference between the deformation textures at the two thickness reductions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed numerical simulation of ethanol turbulent spray combustion on a rounded jet flame is pre- sented in this article. The focus is to propose a robust mathematical model with relatively low complexity sub- models to reproduce the main characteristics of the cou- pling between both phases, such as the turbulence modulation, turbulent droplets dissipation, and evaporative cooling effect. A RANS turbulent model is implemented. Special features of the model include an Eulerian– Lagrangian procedure under a fully two-way coupling and a modified flame sheet model with a joint mixture fraction– enthalpy b -PDF. Reasonable agreement between measured and computed mean profiles of temperature of the gas phase and droplet size distributions is achieved. Deviations found between measured and predicted mean velocity profiles are attributed to the turbulent combustion modeling adopted

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polythermal glaciers, i.e. glaciers with a combination of ice at and below the freezing point, are widespread in arctic and subarctic environments. The polythermal structure has major implications for glacier hydrology, ice flow and glacial erosion. However, the interplay of factors governing its spatial and temporal variations such as net mass balance, ice advection and water content in the ice is poorly investigated and as yet not fully understood. This study deals with a thorough investigation of the polythermal regime on Storglaciären, northern Sweden, a small valley glacier with a cold surface layer in the ablation area. Extensive field work was performed including mapping of the cold surface layer using ground-penetrating radar, ice temperature measurements, mass balance and ice velocity measurements. Analyses of these data combined with numerical modelling were used specifically to investigate the spatial and temporal variability of the cold surface layer, the spatial distribution of the water content just below the cold surface layer transition, the effect of radar frequency on the detection of the surface layer, and the sensitivity of the cold surface layer to changes in forcing. A comparison between direct temperature measurements in boreholes and ground-penetrating surveys shows that the radar-inferred cold-temperate transition depth is within ±1 m from the melting point of ice at frequencies above ~300 MHz. At frequencies below ~155 MHz, the accuracy degrades because of reduced scattering efficiency that occurs when the scatterers become much smaller compared to the wavelength. The mapped spatial pattern of the englacial cold-temperate transition boundary is complex. This pattern reflects the observed spatial variation in net loss of ice at the surface by ablation and vertical advection of ice, which is suggested to provide the predominant forcing of the cold surface layer thickness pattern. This is further supported by thermomechanical modeling of the cold surface layer, which indicates high sensitivity of the cold surface layer thickness to changes in vertical advection rates. The water content is the least investigated quantity that is relevant for the thermal regime of glaciers, but also the most difficult to assess. Spatial variability of absolute water content in the temperate ice immediately below the cold surface layer on Storglaciären was determined by combining relative estimates of water content from ground-penetrating radar data with absolute determination from temperature measurements and the thermal boundary condition at the freezing front. These measurements indicate large-scale spatial variability in the water content, which seems to arise from variations in entrapment of water at the firn-ice transition. However, this variability cannot alone explain the spatial pattern in the thermal regime on Storglaciären. Repeated surveys of the cold surface layer show a 22% average thinning of the cold surface layer on Storglaciären between 1989 and 2001. Transient thermomechanical modeling results suggest that the cold surface layer adapts to new equilibrium conditions in only a few decades after a perturbation in the forcing is introduced. An increased winter air temperature since mid-1980s seems to be the cause of the observed thinning of the cold surface layer. Over the last decades, mass balance measurements indicate that the glacier has been close to a steady state. The quasi-steady state situation is also reflected in the vertical advection, which shows no significant changes during the last decades. Increased winter temperatures at the ice surface would result in a slow-down of the formation of cold ice at the base of the cold surface layer and lead to a larger imbalance between net loss of ice at the surface and freezing of temperate ice at the cold-temperate transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The main types of submarine geological emissions are classified as cold seeps (hydrocarbons and brines) and hot vents. These processes result in the emission of geological fluids: brine, gases (mainly hydro-carbons), sediments and rocks. Submarine emissions are associated with an intensive geological, geo-chemical, thermal and biological activity (Judd and Hovland, 2007), and constitute a key process in the dynamics of the global cycles of the planet Earth.