981 resultados para catalytic
Resumo:
Rhizome of cassava plants (Manihot esculenta Crantz) was catalytically pyrolysed at 500 °C using analytical pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) method in order to investigate the relative effect of various catalysts on pyrolysis products. Selected catalysts expected to affect bio-oil properties were used in this study. These include zeolites and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F type), metal oxides (zinc oxide, zirconium (IV) oxide, cerium (IV) oxide and copper chromite) catalysts, proprietary commercial catalysts (Criterion-534 and alumina-stabilised ceria-MI-575) and natural catalysts (slate, char and ashes derived from char and biomass). The pyrolysis product distributions were monitored using models in principal components analysis (PCA) technique. The results showed that the zeolites, proprietary commercial catalysts, copper chromite and biomass-derived ash were selective to the reduction of most oxygenated lignin derivatives. The use of ZSM-5, Criterion-534 and Al-MSU-F catalysts enhanced the formation of aromatic hydrocarbons and phenols. No single catalyst was found to selectively reduce all carbonyl products. Instead, most of the carbonyl compounds containing hydroxyl group were reduced by zeolite and related materials, proprietary catalysts and copper chromite. The PCA model for carboxylic acids showed that zeolite ZSM-5 and Al-MSU-F tend to produce significant amounts of acetic and formic acids.
Resumo:
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol–gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous–mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.
Resumo:
Reproducible preparation of a number of modified clay and clay~like materials by both conventional and microwave-assisted chemistry, and their subsequent characterisation, has been achieved, These materials are designed as hydrocracking catalysts for the upgrading of liquids obtained by the processing of coal. Contact with both coal derived liquids and heavy petroleum resids has demonstrated that these catalysts are superior to established proprietary catalysts in terms of both initial activity and deactivation resistance, Of particular activity were a chromium-pillared montmorillonite and a tin intercalated laponite, Layered Double Hydroxides (LDH's) have exhibited encouraging thermal stability. Development of novel methods for hydrocracking coal derived liquids, using a commercial microwave oven, modified reaction vessels and coal model compounds has been attempted. Whilst safe and reliable operation of a high pressure microwave "bomb" apparatus employing hydrogen, has been achieved, no hydrotreatment reactions occurred,
Resumo:
Agricultural residues from Thailand, namely stalk and rhizome of cassava plants, were employed as raw materials for bio-oil production via fast pyrolysis technology. There were two main objectives of this project. The first one was to determine the optimum pyrolysis temperature for maximising the organics yield and to investigate the properties of the bio-oils produced. To achieve this objective, pyrolysis experiments were conducted using a bench-scale (150 g/h) reactor system, followed by bio-oil analysis. It was found that the reactor bed temperature that could give the highest organics yield for both materials was 490±15ºC. At all temperatures studied, the rhizome gave about 2-4% higher organics yields than the stalk. The bio-oil derived from the rhizome had lower oxygen content, higher calorific value and better stability, thus indicating better quality than that produced from the stalk. The second objective was to improve the bio-oil properties in terms of heating value, viscosity and storage stability by the incorporation of catalyst into the pyrolysis process. Catalytic pyrolysis was initially performed in a micro-scale reactor to screen a large number of catalysts. Subsequently, seven catalysts were selected for experiments with larger-scale (150 g/h) pyrolysis unit. The catalysts were zeolite and related materials (ZSM-5, Al-MCM-41 and Al-MSU-F), commercial catalysts (Criterion-534 and MI-575), copper chromite and ash. Additionally, the combination of two catalysts in series was investigated. These were Criterion-534/ZSM-5 and Al-MSU-F/ZSM-5. The results showed that all catalysts could improve the bio-oils properties as they enhanced cracking and deoxygenation reactions and in some cases such as ZSM-5, Criterion-534 and Criterion-534/ZSM-5, valuable chemicals like hydrocarbons and light phenols were produced. The highest concentration of these compounds was obtained with Criterion-534/ZSM-5.