998 resultados para cardiac abnormalities
Resumo:
Inhibition of glycogen synthase kinase 3β (GSK3β) as a consequence of its phosphorylation by protein kinase B/Akt (PKB/Akt) has been implicated in cardiac myocyte hypertrophy in response to endothelin-1 or phenylephrine. We examined the regulation of GSK3α (which we show to constitute a significant proportion of the myocyte GSK3 pool) and GSK3β in cardiac myocytes. Although endothelin increases phosphorylation of GSK3 and decreases its activity, the response is less than that induced by insulin (which does not promote cardiac myocyte hypertrophy). GSK3 phosphorylation induced by endothelin requires signalling through the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade and not the PKB/Akt pathway, whereas the reverse is true for insulin. Cardiac myocyte hypertrophy involves changes in morphology, and in gene and protein expression. The potent GSK3 inhibitor 1-azakenpaullone increases myocyte area as a consequence of increased cell length whereas phenylephrine increases both length and width. Azakenpaullone or insulin promotes AP1 transcription factor binding to an AP1 consensus oligonucleotide, but this was significantly less than that induced by endothelin and derived principally from increased binding of JunB protein, the expression of which was increased. Azakenpaullone promotes significant changes in gene expression (assessed by Affymetrix microarrays), but the overall response is less than with endothelin and there is little overlap between the genes identified. Thus, although GSK3 may contribute to cardiac myocyte hypertrophy in some respects (and presumably plays an important role in myocyte metabolism), it does not appear to contribute as significantly to the response induced by endothelin as has been maintained.
Resumo:
Objective Myocardial repair following injury in mammals is restricted such that damaged areas are replaced by scar tissue, impairing cardiac function. MRL mice exhibit exceptional regenerative healing in an ear punch wound model. Some myocardial repair with restoration of heart function has also been reported following cryoinjury. Increased cardiomyocyte proliferation and a foetal liver stem cell population were implicated. We investigated molecular mechanisms facilitating myocardial repair in MRL mice to identify potential therapeutic targets in non-regenerative species. Methods Expressions of specific cell-cycle regulators that might account for regeneration (CDKs 1, 2, 4 and 6; cyclins A, E, D1 and B1; p21, p27 and E2F5) were compared by immunoblotting in MRL and control C57BL/6 ventricles during development. Flow cytometry was used to investigate stem cell populations in livers from foetal mice, and infarct sizes were compared in coronary artery-ligated and sham-treated MRL and C57BL/6 adult mice. Key findings No differences in the expressions of cell cycle regulators were observed between the two strains. Expressions of CD34+Sca1+ckit-, CD34+Sca1+ckit+ and CD34+Sca1-ckit+ increased in livers from C57BL/6 vs MRL mice. No differences were observed in infarct sizes, levels of fibrosis, Ki67 staining or cardiac function between MRL and C57BL/6 mice. Conclusions No intrinsic differences were observed in cell cycle control molecules or stem cell populations between MRL and control C57BL mouse hearts. Pathophysiologically relevant ischaemic injury is not repaired more efficiently in MRL myocardium, questioning the use of the MRL mouse as a reliable model for cardiac regeneration in response to pathophysiologically relevant forms of injury.
Resumo:
Abstract Purpose: The pH discrepancy between healthy and atopic dermatitis skin was identified as a site specific trigger for delivering hydrocortisone from microcapsules. Methods: Using Eudragit L100, a pH-responsive polymer which dissolves at pH 6, hydrocortisone-loaded microparticles were produced by oil-in-oil microencapsulation or spray drying. Release and permeation of hydrocortisone from microparticles alone or in gels was assessed and preliminary stability data was determined. Results: Drug release from microparticles was pH-dependent though the particles produced by spray drying also gave significant non-pH dependent burst release, resulting from their porous nature or from drug enrichment on the surface of these particles. This pH-responsive release was maintained upon incorporation of the oil-in-oil microparticles into Carbopol- and HPMC-based gel formulations. In-vitro studies showed 4 to 5-fold higher drug permeation through porcine skin from the gels at pH 7 compared to pH 5. Conclusions: Permeation studies showed that the oil-in-oil generated particles deliver essentially no drug at normal (intact) skin pH (5.0 – 5.5) but that delivery can be triggered and targeted to atopic dermatitis skin where the pH is elevated. The incorporation of these microparticles into Carbopol- and HPMC-based aqueous gel formulations demonstrated good stability and pH-responsive permeation into porcine skin.
Resumo:
Objective To examine the impact of increasing numbers of metabolic syndrome (MetS) components on postprandial lipaemia. Methods Healthy men (n = 112) underwent a sequential meal postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (0 min) and lunch (330 min). Lipids and glucose were measured in the fasting sample, with triacylglycerol (TAG), non-esterified fatty acids and glucose analysed in the postprandial samples. Results Subjects were grouped according to the number of MetS components regardless of the combinations of components (0/1, 2, 3 and 4/5). As expected, there was a trend for an increase in body mass index, blood pressure, fasting TAG, glucose and insulin, and a decrease in fasting high-density lipoprotein cholesterol with increasing numbers of MetS components (P≤0.0004). A similar trend was observed for the summary measures of the postprandial TAG and glucose responses. For TAG, the area under the curve (AUC) and maximum concentration (maxC) were significantly greater in men with ≥ 3 than < 3 components (P < 0.001), whereas incremental AUC was greater in those with 3 than 0/1 and 2, and 4/5 compared with 2 components (P < 0.04). For glucose, maxC after the test breakfast (0-330 min) and total AUC (0-480 min) were higher in men with ≥ 3 than < 3 components (P≤0.001). Conclusions Our data analysis has revealed a linear trend between increasing numbers of MetS components and magnitude (AUC) of the postprandial TAG and glucose responses. Furthermore, the two meal challenge discriminated a worsening of postprandial lipaemic control in subjects with ≥ 3 MetS components.
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share behavioural-cognitive abnormalities in sustained attention. A key question is whether this shared cognitive phenotype is based on common or different underlying pathophysiologies. To elucidate this question, we compared 20 boys with ADHD to 20 age and IQ matched ASD and 20 healthy boys using functional magnetic resonance imaging (fMRI) during a parametrically modulated vigilance task with a progressively increasing load of sustained attention. ADHD and ASD boys had significantly reduced activation relative to controls in bilateral striato–thalamic regions, left dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex. Both groups also displayed significantly increased precuneus activation relative to controls. Precuneus was negatively correlated with the DLPFC activation, and progressively more deactivated with increasing attention load in controls, but not patients, suggesting problems with deactivation of a task-related default mode network in both disorders. However, left DLPFC underactivation was significantly more pronounced in ADHD relative to ASD boys, which furthermore was associated with sustained performance measures that were only impaired in ADHD patients. ASD boys, on the other hand, had disorder-specific enhanced cerebellar activation relative to both ADHD and control boys, presumably reflecting compensation. The findings show that ADHD and ASD boys have both shared and disorder-specific abnormalities in brain function during sustained attention. Shared deficits were in fronto–striato–parietal activation and default mode suppression. Differences were a more severe DLPFC dysfunction in ADHD and a disorder-specific fronto–striato–cerebellar dysregulation in ASD.
Resumo:
Interest in the effects of insulin on the heart came with the recognition that hyperglycemia in the context of myocardial infarction is associated with increased risks of mortality, congestive heart failure, or cardiogenic shock. More recently, instigated by research findings on stress hyperglycemia in critical illness, this interest has been extended to the influence of insulin on clinical outcome after cardiac surgery. Even in nondiabetic individuals, stress hyperglycemia commonly occurs as a key metabolic response to critical illness, eg, after surgical trauma. It is recognized as a major pathophysiological feature of organ dysfunction in the critically ill. The condition stems from insulin resistance brought about by dysregulation of key homeostatic processes, which implicates immune/inflammatory, endocrine, and metabolic pathways. It has been associated with adverse clinical outcomes, including increased mortality, increased duration of mechanical ventilation, increased intensive care unit (ICU) and hospital stay, and increased risk of infection. Hyperglycemia in critical illness is managed with exogenous insulin as standard treatment; however, there is considerable disagreement among experts in the field as to what target blood glucose level is optimal for the critically ill patient. Conventionally, the aim of insulin therapy has been to maintain blood glucose levels below the renal threshold, typically 220 mg/dL (12.2 mmol/L). In recent years, some have advocated tight glycemic control (TGC) with intensive insulin therapy (IIT) to normalize blood glucose levels to within the euglycemic range, typically 80 to 110 mg/dL (4.4–6.1 mmol/L).
Resumo:
Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.
Resumo:
Increasing evidence suggests that obesity is a chronic inflammatory disease, in which adipose tissue is involved in a network of endocrine signals to modulate energy homeostasis. These oxidative-inflammatory pathways, which are associated with cardiovascular complications, are also observed during the aging process. In this study, we investigated the interaction between aging and the development of obesity in a hyperphagic rat model. Metabolic profiles of the liver, white adipose tissue (WAT) and heart from young and adult Zucker lean (fa/+) and obese (fa/fa) rats were characterized using a (1)H NMR-based metabonomics approach. We observed premature metabolic modifications in all studied organs in obese animals, some of which were comparable to those observed in adult lean animals. In the cardiac tissue, young obese rats displayed lower lactate and scyllo-inositol levels associated with higher creatine, choline and phosphocholine levels, indicating an early modulation of energy and membrane metabolism. An early alteration of the hepatic methylation and transsulfuration pathways in both groups of obese rats indicated that these pathways were affected before diabetic onset. These findings therefore support the hypothesis that obesity parallels some metabolic perturbations observed in the aging process and provides new insights into the metabolic modifications occurring in pre-diabetic state.
Resumo:
Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.
Resumo:
Infant faces elicit early, specific activity in the orbitofrontal cortex (OFC), a key cortical region for reward and affective processing. A test of the causal relationship between infant facial configuration and OFC activity is provided by naturally occurring disruptions to the face structure. One such disruption is cleft lip, a small change to one facial feature, shown to disrupt parenting. Using magnetoencephalography, we investigated neural responses to infant faces with cleft lip compared with typical infant and adult faces. We found activity in the right OFC at 140 ms in response to typical infant faces but diminished activity to infant faces with cleft lip or adult faces. Activity in the right fusiform face area was of similar magnitude for typical adult and infant faces but was significantly lower for infant faces with cleft lip. This is the first evidence that a minor change to the infant face can disrupt neural activity potentially implicated in caregiving.
Resumo:
Sub-lethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na+ channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na+ current observed in native tissue. Inhibition was associated with a hyperpolarizing shift in the steady-state inactivation properties of the channels and was unaffected by modification of channel gating induced by anemone toxin (rATX-II). Systematic pharmacological assessment indicated that no recognised CO-sensitive intracellular signalling pathways appeared to mediate CO inhibition of Nav1.5. Inhibition was, however, markedly suppressed by inhibition of nitric oxide (NO) formation, but NO donors did not mimic or occlude channel inhibition by CO, indicating that NO alone did not account for the actions of CO. Exposure of cells to dithiothreitol immediately before CO exposure also dramatically reduced the magnitude of current inhibition. Similarly, L-cysteine and N-ethylmaleimide significantly attenuated the inhibition caused by CO. In the presence of DTT and the NO inhibitor L-NAME, the ability of CO to inhibit Nav1.5 was almost fully prevented. Our data indicate that inhibition of peak Na+ current (which can lead to Brugada-syndrome like arrhythmias) occurs via a mechanism distinct from induction of the late current, requires NO formation and is dependent on channel redox state.
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share cognitive abnormalities in temporal foresight. A key question is whether shared cognitive phenotypes are based on common or different underlying pathophysiologies and whether comorbid patients have additive neurofunctional deficits, resemble one of the disorders or have a different pathophysiology. We compared age- and IQ-matched boys with non-comorbid ADHD (18), non-comorbid ASD (15), comorbid ADHD and ASD (13) and healthy controls (18) using functional magnetic resonance imaging (fMRI) during a temporal discounting task. Only the ASD and the comorbid groups discounted delayed rewards more steeply. The fMRI data showed both shared and disorder-specific abnormalities in the three groups relative to controls in their brain-behaviour associations. The comorbid group showed both unique and more severe brain-discounting associations than controls and the non-comorbid patient groups in temporal discounting areas of ventromedial and lateral prefrontal cortex, ventral striatum and anterior cingulate, suggesting that comorbidity is neither an endophenocopy of the two pure disorders nor an additive pathology.