994 resultados para calcite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An intensive stable isotopic investigation was conducted on sediments recovered from the Great Australian Bight during Ocean Drilling Program Leg 182 at Sites 1127, 1129, and 1131. The sites comprise a transect from the shelf edge to upper slope through a thick sequence of predominately Quaternary cool-water carbonate sediments. Detailed mineralogic and stable isotopic (d18O and d13C) analyses of sediments from a total of 306 samples are presented from all three sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides a brief, descriptive, sedimentological background for the chapters on hydraulic piston core Site 480 in this symposium, and supplements data given in the site chapter for Sites 479-480 (this volume, Pt. 1). Sediments are composed primarily of planktonic diatoms, with minor numbers of silicoflagellates, radiolarians, and varying amounts of both benthic and planktonic foraminifers, along with a large terrigenous component of olive brown, silty clay. The section contains meter-thick intervals of finely laminated facies alternating with nonlaminated zones. A few paleoenvironmental events are documented within the generally uniform sequence by sporadic occurrences of thin turbidites, phosphatic concretions, fish debris concentrations, an ash layer, and a thin layer of diagenetic dolomite. The distribution of nonlaminated and laminated zones is attributed to fluctuations of bottom-water oxygen content caused by variations in circulation, fertility, and productivity. Homogeneous sections are interpreted as coinciding with cooler climatic periods, whereas laminated sections seem to correspond to upwelling conditions during drier periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250? C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation of recent bottom sediments between the Cyprus Island and the Syrian seacoast during Cruise 27 of R/V Vityaz-2 (1993) gave comprehensive field data significantly complementing our understanding of the sedimentation process in this part of the Mediterranean Sea. Mineralogical and geochemical indicators testify to different input into sedimentation of the Syrian and Nile River sources. The Nile River plays a leading role in terrigenous sedimentation in the southeastern Mediterranean Sea, especially in deep-sea areas. In contrast, contribution of weathering products of basalts and ophiolites from the Syrian drainage area (hornblende, monoclinic and rhombic pyroxenes, olivine, spinel, palagonite, and epidote) are particularly detectable in sediments of the near-coast zone. During Late Quaternary contribution of terrigenous material both from the Syrian and Nile sources was irregular in time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distinctive low-carbonate interval interrupts the continuous limestone-marl alternation of the deep-marine Gorrondatxe section at the early Lutetian (middle Eocene) C21r/C21n Chron transition. The interval is characterized by increased abundance of turbidites and kaolinite, a 3 per mil decline in the bulk d13C record, a >1 per mil decline in benthic foraminiferal d13C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminiferal diversity, thus recording a significant environmental perturbation. The onset of the perturbation correlates with the C21r-H6 event recently defined in the Atlantic and Pacific oceans, which caused a 2°C warming of the seafloor and increased carbonate dissolution. The perturbation was likely caused by the input of 13C-depleted carbon into the ocean-atmosphere system, thus presenting many of the hallmarks of Paleogene hyperthermal deposits. However, from the available data it is not possible to conclusively state that the event was associated with extreme global warming. Based on our analysis, the perturbation lasted 226 kyr, from 47.44 to 47.214 Ma, and although this duration suggests that the triggering mechanism may have been similar to that of the Paleocene-Eocene Thermal Maximum (PETM), the magnitude of the carbon input and the subsequent environmental perturbation during the early Lutetian event were not as severe as in the PETM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first 1400-year floating varve chronology for north-eastern Germany covering the late Allerød to the early Holocene has been established by microscopic varve counts from the Rehwiese palaeolake sediment record. The Laacher See Tephra (LST), at the base of the studied interval, forms the tephrochronological anchor point. The fine laminations were examined using a combination of micro-facies and ?-XRF analyses and are typical of calcite varves, which in this case provide mainly a warm season signal. Two varve types with different sub-layer structures have been distinguished: (I) complex varves consisting of up to four seasonal sub-layers formed during the Allerød and early Holocene periods, and, (II) simple two sub-layer type varves only occurring during the Younger Dryas. The precision of the chronology has been improved by varve-to-varve comparison of two independently analyzed sediment profiles based on well-defined micro-marker layers. This has enabled both (1) the precise location of single missing varves in one of the sediment profiles, and, (2) the verification of varve interpolation in disturbed varve intervals in the parallel core. Inter-annual and decadal-scale variability in sediment deposition processes were traced by multi-proxy data series including seasonal layer thickness, high-resolution element scans and total organic and inorganic carbon data at a five-varve resolution. These data support the idea of a two-phase Younger Dryas, with the first interval (12,675 - 12,275 varve years BP) characterised by a still significant but gradually decreasing warm-season calcite precipitation and a second phase (12,275 - 11,640 varve years BP) with only weak calcite precipitation. Detailed correlation of these two phases with the Meerfelder Maar record based on the LST isochrone and independent varve counts provides clues about regional differences and seasonal aspects of YD climate change along a transect from a location proximal to the North Atlantic in the west to a more continental site in the east.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atmospheric partial pressure of carbon dioxide (pCO2) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years1. The oceans are a principal sink for anthropogenic CO2 where it is estimated to have caused a 30% increase in the concentration of H+ in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100. Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem4, 5. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO2 vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of pCO2. Sea-grass production was highest in an area at mean pH 7.6 (1,827 µatm pCO2) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of pCO2 and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A joint mesocosm experiment took place in February/March 2013 in the bay of Villefranche in France as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 2 weeks period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseavillefranche2013.obs-vlfr.fr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A joint mesocosm experiment took place in June/July 2012 in Corsica (bay of Calvi, Stareso station;http://www.stareso.com/) as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 20 days period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseastareso2012.wordpress.com/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several carbonaceous layers or fragments were recovered from sediments of Sites 1150 and 1151 on the deep-sea terrace of the Japan Trench during Leg 186. The X-ray diffraction analysis (XRD) data indicate that these are predominantly dolomitic. In this study, carbon and oxygen isotopes of these carbonates recovered at Sites 1150 and 1151 are presented. The oxygen isotope ratios of the dolomites analyzed range from +0.4 per mil to +4.1 per mil vs. Peedee formation belemnite (PDB) and those of calcites from +0.6 per mil to +2.8 per mil PDB. The isotopic composition of carbon varies from -7.0 per mil to +12.3 per mil PDB in dolomite and from -13.4 per mil to -24.1 per mil PDB in calcite. The wide range of carbon isotopic compositions indicates that the carbonate samples were formed by the decomposition of organic matter through reactions such as oxidation, sulfate reduction, and methane formation during diagenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Great Meteor Seamount (GMS) is a very large (24,000 km**3) guyot with a flat summit plateau at 330-275 m; it has a volcanic core, capped by 150-600 m of post-Middle-Miocene carbonate and pyroclastic rocks, and is covered by bioclastic sands. The much smaller Josephine Seamount (JS, summit 170- 500 m w. d.) consists mainly of basalt which is only locally covered by limestones and bioclastic sands. 2. The bioclastic sands are almost free of terrigenous components, and are well sorted, unimodal medium sands. (1) "Recent pelagic sands" are typical of water depths > 600 m (JS) or > 1000 m (GMS). (2) "Sands of mixed relict-recent origin" (10-40% relict) and (3) "relict sands" (> 40% relict) are highly reworked, coarse lag deposits from the upper flanks and summit tops in which recent constituents are mixed with Pleistocene or older relict material. 3. From the carbonate rocks of both seamounts, 12 "microfacies" (MF-)types were distinguished. The 4 major types are: (1) Bio(pel)sparites (MF 1) occur on the summit plateaus and consist of magnesian calcite cementing small pellets and either redeposited planktonic bioclasts or mixed benthonic-planktonic skeletal debris ; (2) Porous biomicrites (MF 2) are typical of the marginal parts of the summit plateaus and contain mostly planktonic foraminifera (and pteropods), sometimes with redeposited bioclasts and/or coated grains; (3) Dense, ferruginous coralline-algal biomicrudites with Amphistegina sp. (MF 3.1), or with tuffaceous components (MF 3.2); (4) Dense, pelagic foraminiferal nannomicrite (MF 4) with scattered siderite rhombs. Corresponding to the proportion and mineralogical composition of the bioclasts and of the (Mgcalcitic) peloids, micrite, and cement, magnesian calcite (13-17 mol-% MgCO3) is much more abundant than low-Mg calcite and aragonite in rock types (1) and (2). Type (3) contains an "intermediate" Mg-calcite (7-9 mol-X), possibly due to an original Mg deficiency or to partial exsolution of Mg during diagenesis. The nannomicrite (4) consists of low-Mg calcite only. 4. Three textural types of volcanic and associated gyroclastic rocks were distinguished: (1) holohyaline, rapidly chilled and granulated lava flows and tuffs (palagonite tuff breccia and hyaloclastic top breccia); (2) tachylitic basalts (less rapidly chilled; with opaque glass); and (3) "slowly" crystallized, holocrystalline alkali olivine basalts. The carbonate in most mixed pyroclastic-carbonate sediments at the basalt contact is of "post-eruptive" origin (micritic crusts etc.); "pre-eruptive" limestone is recrystallized or altered at the basalt contact. A deuteric (?hydrothermal) "mineralX", filling vesicles in basalt and cementing pyroclastic breccias is described for the first time. 5. Origin and development of GMS andJS: From its origin, some 85 m. y. ago, the volcano of GMS remained active until about 10 m. y. B. P. with an average lava discharge of 320 km**3/m. y. The volcanic origin of JS is much younger (?Middle Tertiary), but the volcanic activity ended also about 9 m. y. ago. During L a t e Miocene to Pliocene times both volcanoes were eroded (wave-rounded cobbles). The oldest pyroclastics and carbonates (MF 3.1, 3.2) were originally deposited in shallow-water (?algal reef hardground). The Plio (-Pleisto) cene foraminiferal nannomicrites (MF 4) suggest a meso- to bathypelagic environment along the flanks of GMS. During the Quaternary (?Pleistocene) bioclastic sands were deposited in water depths beyond wave base on the summit tops, repeatedly reworked, and lithified into loosely consolidated biopelsparites and biomicrites (MF 1 and 2; Fig. 15). Intermediate steps were a first intragranular filling by micrite, reworking, oncoidal coating, weak consolidation with Mg-calcite cemented "peloids" in intergranular voids and local compaction of the peloids into cryptocrystalline micrite with interlocking Mg-calcite crystals up to 4p. The submarine lithification process was frequently interrupted by long intervals of nondeposition, dissolution, boring, and later infilling. The limestones were probably never subaerially exposed. Presently, the carbonate rocks undergo biogenic incrustation and partial dissolution into bioclastic sands. The irregular distribution pattern of the sands reflects (a) the patchy distribution of living benthonic organisms, (b) the steady rain of planktonic organism onto the seamount top, (c) the composition of disintegrating subrecent limestones, and (d) the intensity of winnowing and reworking bottom current

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Morphology and sedimentation The deepest parts of the Persian Gulf lie off the Iranian coast. Several swells separate the Persian Gulf into the Western Basin, the Central Basin and the Strait of Hormuz, which leads without noticeable morphological interruption onto the Biaban Shelf; the latter gradually drops off towards the continental slope, which itself has a strongly subdivided morphology. The sediment distribution in the Western Basin runs parallel to the basin's axis to a depth of 50 -60 m. This is caused by the shallow and uniform slope of the Iranian coast into the Western Basin, by clear exposure of the area to the Shamal-Winds and by tidal currents parallel to the basin's axis. Most other parameters also show isolines parallel to the coast line. Data from the sediment analyses show a net transport which extends out along the Central Swell: coarse fraction > 63 µ, total carbonate content, carbonate in fine fractions < 2 µ, 2-6 µ and 20-63 µ, calcite-aragonite ratios in the fine fractions 2-6 µ and 20-63 µ and quartz-dolomite ratios in fine fraction 2-6 µ. At least the uppermost 10-40 m of this sediment is late Holocene. This implies sedimentation rates of several meters per 1000 years. The slope from the Iranian coast into the Central Basin (max. depth 100 m) is generally steeper, with interspersed islands and flats. Both facts tend to disturb a sediment dustribition parallel to the basin's axis over extensive areas and may preclude any such trend from being detected by the methods and sample net used. The spatial distribution of the coarse fraction, however, seems to indicate sediment transport at greater water depths perpendicular to the basin's long axis and along the steepest gradients well into the Central Basin. The flats of the Central Basin have a sediment cover distinctly different from those of the deeper basin areas. Characteristic parameters are the extremely high percentages of coarse grained sediments, total content of carbonate CO2 over 40, low total organic carbon content, (however values are high if calculated on the basis of the < 63 µ fraction), low total N-content, and low C/N ratios. These characteristics probably result from the absence of any terrigenous material being brought in as well as from exposure to wave action. Finest terrigenous material is deposited in the innermost protected part of the Hormuz Bay. In the deep channel cut into the Biaban Shelf which carries the Persian Gulf out-flow water to the Indian Ocean, no fine grained sediment is deposited as shown by grain size data. 2. Geographic settings and sedimentation Flat lands border the Arabian coast of the Persian Gulf except for the Oman region. The high and steep Zagros Mountains form the Iranian coastline. Flat topography in combination with generally low precipitation precludes fluviatile sediment being added from the South. Inorganic and biogenic carbonates accumulating under low sedimentation rates are dominant on the shallow Arabic Shelf and the slopes into the Western and Central Basins. The fluviatile sediment brought in from the Iranian side, however decisively determine the composition of the Holocene sediment cover in the Persian Gulf and on the Biaban Shelf. Holocene sediments extend 20-30 km seaward into the Western Basin and about 25 km on to the Biaban Shelf. As mentioned before, sedimentation rates are of several meters/1000 years. The rocks exposed in the hinterland influence the sediments. According to our data the Redbeds of the Zagros Mountains determine the colour of the very fine grained sediments near the Iranian Coast of the Persian Gulf. To the West of Hormuz, addition of carbonate minerals is particularly high. Dolomite and protodolomite, deposited only in this area, as well as palygorskite, have proven to be excellent trace minerals. To the East of Hormuz, the supply of terrigenous carbonates is considerably lower. Clay minerals appear to bring in inorganically bound nitrogen thus lowering the C/N ratio in these sediments especially off river mouths. 3. Climate and sedimentation The Persian Gulf is located in a climatically arid region. This directly affects sedimentation through increased wind action and the infrequent but heavy rainfalls which cause flash floods. Such flash floods could be responsible for transporting sedheats into the Central Basin in a direction perpendicular to the Gulf's axis. Eolian influx is difficult to asses from our data; however, it probably is of minor importance from the Iranian side and may add, at the most, a few centimeters of fine sediment per 1000 years. 4. Hydrology and sedimentation High water temperatures favor inorganic carbonate precipitation in southern margin of the Gulf, and probably on the flats, as well as biogenic carbonate production in general. High evaporation plus low water inflow through rivers and precipitation cause a circulation pattern that is typical for epicontinental seas within the arid climate region. Surface water flows in from the adjoining ocean, in this case the Indian Ocean and sinks to the bottom of the Persian Gulf mainly in the northern part of the Western Basin, on the "Mesopotamischer Flachschelf" ard probably in the area of the "Arabischer Flachschelf". This sinking water continually rejuvenates the bottom out-flow water. The inflowing surface water from the Indian Ocean brings organic matter into the Persian Gulf, additional nutrients are added by the "fresh" upwelling waters of the Gulf of Oman. Both nutrients and organic matter diminish very rapidly as the water moves into the Persian Gulf. This depletion of nutrients and organic matter is the reasonfor generally low organic carbon contents of the Persian Gulf sediments. The Central Swell represents a distinct boundary, to the west of which the organic carbon content are lower than to the east when sediment samples of similar grain size distribution are compared. The outflow carries well oxygenated water over the bottom of the Persian Gulf and the resulting oxidation further decreases the content of organic matter. In the Masandam-Channel and in the Biaban-Shelf channel, the outflowing water prevents deposition of fine material and transports sediment particles well beyond the shelf margin. The outflowing water remains at a depth of 200-300 m depending on its density and releases ist suspending sediment load to the ocean floor, irrespectative of the bottom morphology. This is reflected in several parameters in which the sediments from beneath the outflow differ from nearby sediments not affected by the outflowing water. High carbonate content of total samples and of the individual size fraction as well as high aragonite and dolomite contents of individual size fractions characterize the sediment beneath the outflowing water. The tidal currents, which avt more or less parallel to the Gulf's axis, favor mixing of the water masses, they rework sediments at velocities reported here. This fact enlarges to a certain degree the extent of our interfaces which are based on only a few sample points (Persian Gulf and Biaban Shelf one sample per 620 km**2, continental slope one sample per 1000 km**2). The water on the continental slope shows and oxygen minimum at 200-1200 m which favors preservation of organically-bound carbon in the sediment. The low pH-values may even permit dissolution of carbonate minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.