999 resultados para brain sulcus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many aspects of human behavior are driven by rewards, yet different people are differentially sensitive to rewards and punishment. In this study, we showthat white matter microstructure inthe uncinate/inferiorfronto-occipitalfasciculus, defined byfractional anisotropy values derived from diffusion tensor magnetic resonance images, correlates with both short-term (indexed by the fMRI blood oxygenation level-dependent response to reward in the nucleus accumbens) and long-term (indexed by the trait measure sensitivity to punishment) reactivityto rewards.Moreover,traitmeasures of reward processingwere also correlatedwith reward-relatedfunctional activation in the nucleus accumbens. The white matter tract revealed by the correlational analysis connects the anterior temporal lobe with the medial and lateral orbitofrontal cortex and also supplies the ventral striatum. The pattern of strong correlations suggests an intimate relationship betweenwhitematter structure and reward-related behaviorthatmay also play a rolein a number of pathological conditions, such as addiction and pathological gambling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sometimes vividly remember things that did not happen, a phenomenon with general relevance, not only in the courtroom. It is unclear to what extent individual differences in false memories are driven by anatomical differences in memory-relevant brain regions. Here we show in humans that microstructural properties of different white matter tracts as quantified using diffusion tensor imaging are strongly correlated with true and false memory retrieval. To investigate these hypotheses, we tested a large group of participants in a version of the Deese-Roediger-McDermott paradigm (recall and recognition) and subsequently obtained diffusion tensor images. A voxel-based whole-brain level linear regression analysis was performedto relatefractional anisotropyto indices oftrue andfalse memory recall and recognition. True memory was correlated to diffusion anisotropy in the inferior longitudinal fascicle, the major connective pathway of the medial temporal lobe, whereas a greater proneness to retrieve false items was related to the superior longitudinal fascicle connecting frontoparietal structures. Our results show that individual differences in white matter microstructure underlie true and false memory performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrinolytic therapy with Recombinant Tissue-Plasminogen Activator (rt-PA) is currently the only effective treatment for ischaemic stroke in its acute phase. Even though its use generally improves the prognosis of those patients likely to receive it, rt-PA administration is associated to several risks, such as haemorrhagic transformation ofthe ischaemic lesion and activation of excitotoxic mechanisms that may contribute to an increase in mortality or to a poor outcome in certain occasions, specially when arterial recanalization is not achieved or the rt-PA is lately administrated. Since in the last few years the role of glutamate in the neurotoxicity associated toischaemia has been widely studied and it is known that high plasma glutamate levels are predictors of ischaemic lesion growth and poor neurological outcome, it is necessary to find out which factors can contribute to glutamate release in the brain. The aim of this study is to determine if rt-PA administration is related to an increase in plasma glutamate levels, as well as to define if higher plasma glutamate levels at admission are related to different evolution and prognosis of our patients, both in those in which recanalisation is achieved and not. A series of cases of patients with hemispheric cerebral infarction admitted in our hospital during a year will be studied, and the data obtained from them will be compared to the data obtained from a control group, the samples of wich were takenyears ago, before rt-PA was routinely used

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The outcome from traumatic brain injury (TBI) is variable and only partly explained by known prognostic factors. This is especially true for predicting long-term outcome. Genetic factors may influence the brain`s susceptibility to injury or capacity for repair and regeneration. To examine the association of apolipoproteinE (apoE) genotype with long-term outcome, hippocampal volumes and general brain atrophy, we determined the apoE genotype from 61 TBI patients who had been injured over on average 31 years earlier. The long-term outcome was evaluated with repeated neuropsychological testing and by applying various measures of everyday functioning and quality of life. Magnetic resonance imaging (MRI) based volumetric analyses of the hippocampus and lateral ventricles were performed. In the prospective study, the purpose was to examine the association between apoE genotype and visibility of traumatic brain lesions during the first year after TBI and the ability of apoE genotype, the Glasgow Coma Score (GCS), MRI findings and duration of posttraumatic amnesia (PTA) to predict the one-year outcome. Thirty-three patients with TBI were studied and the outcome was evaluated with the Head Injury Symptom Checklist (HISC) and the Glasgow Outcome Scale extended version (GOS-E) scores one year after the injury. MRI and apoE genotyping were carried out. After three decades, neither hippocampal nor lateral ventricle volumes differed significantly in those patients with the apoE ε4 allele vs those without this allele, but the TBI patients with the apoE ε4 allele showed significantly poorer general cognitive level than those without this allele. This decline was wholly accounted for by a subgroup of patients who had developed incident or clinical dementia. In the prospective study the apoE genotype was not associated with visible MRI changes or outcome. The duration of PTA and acute MRI were the best predictors of one-year outcome in TBI. A portion of the TBI patients with the apoE ε4 allele seem to be at risk of long-term cognitive decline. This association may involve mechanisms other than those responsible for the development of brain atrophy. The early MRI and PTA have an important role in assessing the injury severity and prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization mechanisms between neuronal assemblies might have a key role during language learning. In particular, studying these dynamics may help uncover whether different oscillatory patterns sustain more item-based learning of words and rule-based learning from speech input. Therefore, we tracked the modulation of oscillatory neural activity during the initial exposure to an artificial language, which contained embedded rules. We analyzed both spectral power variations, as a measure of local neuronal ensemble synchronization, as well as phase coherence patterns, as an index of the long-range coordination of these local groups of neurons. Synchronized activity in the gamma band (2040 Hz), previously reported to be related to the engagement of selective attention, showed a clear dissociation of local power and phase coherence between distant regions. In this frequency range, local synchrony characterized the subjects who were focused on word identification and was accompanied by increased coherence in the theta band (48 Hz). Only those subjects who were able to learn the embedded rules showed increased gamma band phase coherence between frontal, temporal, and parietal regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) has been proposed as a biomarker of schizophrenia and, more specifically, as a biomarker of cognitive recovery. Evidence collected in this review indicates that BDNF is relevant in the pathophysiology of schizophrenia and could play a role as a marker of clinical response. BDNF has been shown to play a positive role as a marker in antipsychotic treatment, and it has been demonstrated that typical antipsychotics decrease BDNF levels while atypical antipsychotics maintain or increase serum BDNF levels. Furthermore, BDNF levels have been associated with severe cognitive impairments in patients with schizophrenia. Consequently, BDNF has been proposed as a candidate target of strategies to aid the cognitive recovery process. There is some evidence suggesting that BDNF could be mediating neurobiological processes underlying cognitive recovery. Thus, serum BDNF levels seem to be involved in some synaptic plasticity and neurotransmission processes. Additionally, serum BDNF levels significantly increased in schizophrenia subjects after neuroplasticity-based cognitive training. If positive replications of those findings are published in the future then serum BDNF levels could be definitely postulated as a peripheral biomarker for the effects of intensive cognitive training or any sort of cognitive recovery in schizophrenia. All in all, the current consideration of BDNF as a biomarker of cognitive recovery in schizophrenia is promising but still premature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chorioamnionitis is known to be an important risk factor underlying preterm delivery, and it has also been suggested to associate with brain lesions and deviant neurological development in both preterm and term infants. Cytokines are believed to be the link causing the deleterious effects of inflammation to the nervous system. Their genetic regulation has also been suggested to play a role, as interleukin (IL)-6 -174 and -572 genotypes, which partly regulate IL-6 synthesis responses, have been connected with deviant neurological development in preterm infants. We evaluated the association of histological chorioamnionitis with brain lesions, regional brain volumes, and the functioning of the auditory pathway in very low birth weight/very low gestational age (VLBW/VLGA) infants. In addition, we investigated the association between IL-6 -174 and -572 genotypes and histological chorioamnionitis, neonatal infections, and brain lesions and regional brain volumes in VLBW/VLGA infants. This study is a part of a larger multidisciplinary project PIPARI (Development and Functioning of Very Low Birth Weight Infants from Infancy to School Age), in which the survivors of a 6-year cohort of VLBW/VLGA infants (n=274) are being followed until school age in Turku University Central Hospital, Finland. Placental samples were collected in the delivery room, and were analyzed for histological inflammatory findings. Blood samples from the infants were collected and DNA was genotyped for IL-6-174 and -572 polymorphisms (GG/GC/CC). Brain ultrasound examinations were performed repeatedly in the neonatal intensive care unit and at term age, and were analysed for structural brain lesions. Brain magnetic resonance imaging was performed at term age, and was analysed for regional brain volumes. In addition, diffusion tensor imaging was performed at term, and was used to analyse fractional anisotrophy and the apparent diffusion coefficient of inferior colliculus. The brainstem auditory evoked potential recordings were carried out according to the routine clinical procedure at median age of 30 days after term age. In our study, we found that histological chorioamnionitis was not an independent risk factor for brain lesions, reduced regional brain volumes or abnormal functioning of the auditory pathway in VLBW/VLGA infants. In addition, we found that IL-6 -174 GG and -572 GC genotypes were associated with a higher incidence of histological chorioamnionitis, and that -174 CC genotype associated with higher incidence of septicaemia. The analysed IL-6 genotypes were not associated with other brain lesions, but a reduced volume of basal ganglia and thalami was associated with IL-6 -174 CC and -572 GG genotypes. In conclusion, our findings suggest that histological chorioamnionitis is not an independent risk factor for the brain development of VLBW/VLGA infants, or that the risk caused by inflammation does not exceed the risks attributed to other underlying pathologies behind preterm deliveries. In addition, our findings give reason to propose that IL-6 promoter genotypes have a role in the defence against serious infections and in the brain development of VLBW/VLGA infants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microenvironment of the central nervous system is important for neuronal function and development. During the early stages of embryo development the cephalic vesicles are filled by embryonic cerebrospinal fluid, a complex fluid containing different protein fractions, which contributes to the regulation of the survival, proliferation and neurogenesis of neuroectodermal stem cells. The protein content of embryonic cerebrospinal fluid from chick and rat embryos at the start of neurogenesis has already been determined. Most of the identified gene products are thought to be involved in the regulation of developmental processes during embryogenesis. However, due to the crucial roles played by embryonic cerebrospinal fluid during brain development, the embryological origin of the gene products it contains remains an intriguing question. According to the literature most of these products are synthesised in embryonic tissues other than the neuroepithelium. In this study we examined the embryological origin of the most abundant embryonic cerebrospinal fluid protein fractions by means of slot-blot analysis and by using several different embryonic and extraembryonic protein extracts, immunodetected with polyclonal antibodies. This first attempt to elucidate their origin is not based on the proteins identified by proteomic methods, but rather on crude protein fractions detected by SDS-PAGE analysis and to which polyclonal antibodies were specifically generated. Despite some of the limitations of this study, i.e. that one protein fraction may contain more than one gene product, and that a specific gene product may be contained in different protein fractions depending on post-translational modifications, our results show that most of the analysed protein fractions are not produced by the cephalic neuroectoderm but are rather stored in the egg reservoir; furthermore, few are produced by embryo tissues, thus indicating that they must be transported from their production or storage sites to the cephalic cavities, most probably via embryonic serum. These results raise the question as to whether the transfer of proteins from these two embryo compartments is regulated at this early developmental stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ventral striatum / nucleus accumbens has been implicated in the craving for drugs and alcohol which is a major reason for relapse of addicted people. Craving might be induced by drug-related cues. This suggests that disruption of craving-related neural activity in the nucleus accumbens may significantly reduce craving in alcohol-dependent patients. Here we report on preliminary clinical and neurophysiological evidence in three male patients who were treated with high frequency deep brain stimulation of the nucleus accumbens bilaterally. All three had been alcohol dependent for many years, unable to abstain from drinking, and had experienced repeated relapses prior to the stimulation. After the operation, craving was greatly reduced and all three patients were able to abstain from drinking for extended periods of time. Immediately after the operation but prior to connection of the stimulation electrodes to the stimulator, local field potentials were obtained from the externalized cables in two patients while they performed cognitive tasks addressing action monitoring and incentive salience of drug related cues. LFPs in the action monitoring task provided further evidence for a role of the nucleus accumbens in goal-directed behaviors. Importantly, alcohol related cue stimuli in the incentive salience task modulated LFPs even though these cues were presented outside of the attentional focus. This implies that cue-related craving involves the nucleus accumbens and is highly automatic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heated debate over whether there is only a single mechanism or two mechanisms for morphology has diverted valuable research energy away from the more critical questions about the neural computations involved in the comprehension and production of morphologically complex forms. Cognitive neuroscience data implicate many brain areas. All extant models, whether they rely on a connectionist network or espouse two mechanisms, are too underspecified to explain why more than a few brain areas differ in their activity during the processing of regular and irregular forms. No one doubts that the brain treats regular and irregular words differently, but brain data indicate that a simplistic account will not do. It is time for us to search for the critical factors free from theoretical blinders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.