987 resultados para boron-alloyed steel
Resumo:
The ability of building information modeling (BIM) to positively impact projects in the AEC through greater collaboration and integration is widely acknowledged. This paper aims to examine the development of BIM and how it can contribute to the cold-formed steel (CFS) building industry. This is achieved through the adoption of a qualitative methodology encompassing a literature review, exploratory interviews with industry experts, culminating in the development of e-learning material for the sector. In doing so, the research team have collaborated with one of the United Kingdom’s largest cold-formed steel designer/fabricators. By demonstrating the capabilities of BIM software and providing technical and informative videos in its creation, this project has found two key outcomes. Firstly, to provide invaluable assistance in the transition from traditional processes to a fully collaborative 3D BIM as required by the UK Government under the “Government Construction Strategy” by 2016 in all public sector projects. Secondly, to demonstrate BIM’s potential not only within CFS companies, but also within the AEC sector as a whole. As the flexibility, adaptability and interoperability of BIM software is alluded to, the results indicate that the introduction and development of BIM and the underlying ethos suggests that it is a key tool in the development of the industry as a whole.
Resumo:
A softened strut-and-tie macro model able to reproduce the flexural behaviour of
external beam-column joint is presented. The model is specific for concrete with hooked steel fibres (FRC) and it is designed to calculate the flexural response, as load-deflection curve, of a beam-column sub-assemblages. The model considers the presence of a constant vertical load acting on the column and of a monotonically increasing lateral force applied at the tip of the beam.
Resumo:
This paper investigates the pull-out behaviour (particularly the bearing resistance) of a steel grid reinforcement embedded in silty sand using laboratory tests and numerical analyses. It is demonstrated that the various common analytical equations for calculating the bearing component of pull-out resistance give a wide range of calculated values, up to about 200% disparity. The disparity will increase further if the issue of whether to use the peak or critical state friction angle is brought in. Furthermore, these equations suggest that the bearing resistance factor, N, is only a function of soil friction angle which is not consistent with some design guidelines. In this investigation, a series of large scale laboratory pull-out tests under different test pressures were conducted. The test results unambiguously confirmed that the N factor is a function of test pressure. A modified equation for calculating N is also proposed. To have more in-depth understanding of the pull-out behaviour, the tests were modelled numerically. The input parameters for the numerical analysis were obtained from laboratory triaxial tests. The analysis results were compared with the experimental results. Good agreement between experimental and numerical results was achieved if the strain-softening behaviour from peak strength to critical state condition was captured by the soil model used. © 2013 Elsevier Ltd.
Resumo:
Boron-modified Pd catalysts have shown excellent performance for the selective hydrogenation of alkynes experimentally. In the current work, we investigated the hydrogenation of acetylene on boron-modified Pd(111) and Pd(211) surfaces, utilizing density functional theory calculations. The activity of acetylene hydrogenation has been studied by estimating the effective barrier of the whole process. The selectivity of ethylene formation is investigated from a comparison between the desorption and the hydrogenation of ethylene as well as comparison between the ethylene and the 1,3-butadiene formation. Formation of subsurface carbon and hydrogen on both boron-modified Pd(111) and Pd(211) surfaces has also been evaluated, since these have been reported to affect both the activity and the selectivity of acetylene hydrogenation to produce ethylene on Pd surfaces. Our results provide some important insights into the Pd B catalysts for selective hydrogenation of acetylene and also for more complex hydrogenation systems, such as stereoselective hydrogenation of longer chain alkynes and selective hydrogenation of vegetable oil.
Resumo:
An approach for seismic damage identification of a single-storey steel concentrically braced frame (CBF) structure is presented through filtering and double integration of a recorded acceleration signal. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. The pre-processing achieves reliable numerical integration that predicts the displacement response accurately when compared to the measured lateral in-plane displacement of the CBF structure. The lateral displacement of the CBF structure is used to infer buckling and yielding of bracing members through seismic tests. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated displacement limits. The calculated buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify initial buckling and yielding in the bracing members.
Resumo:
This study investigated how damage changes the modal parameters of a real bridge by means of a field experiment which was conducted on a real steel truss bridge consecutively subjected to four artificial damage scenarios. In the experiment, both the forced and free vibrations of the bridge were recorded, the former for identifying higher modes available exclusively and the latter for lower modes with higher resolution. Results show that modal parameters are little affected by damage causing low stress redistribution. Modal frequencies decrease as damage causing high stress redistribution is applied; such a change can be observed if the damage is at the non-nodal point of the corresponding mode shape. Mode shapes are distorted due to asymmetric damage; they show an amplification in the damaged side as damage is applied at the non-nodal point. Torsion modes become more dominant as damage is applied either asymmetrically or on an element against large design loads. © 2013 Taylor & Francis Group, London.
Resumo:
This study discusses structural damage diagnosis of real steel truss bridges by measuring trafficinduced vibration of bridges and utilizing a damage indicator derived from linear system parameters of a time series model. On-site damage experiments were carried out on real steel truss bridges. Artificial damage was applied to the bridge by severing a truss member with a cutting machine.Vehicle-induced vibrations of the bridges before and after applying damagewere measured and used in structural damage diagnosis of the bridges. Changes in the damage indicator are detected by Mahalanobis-Taguchi system (MTS) which is one of multivariate outlier analyses. The damage indicator and outlier detection was successfully applied to detect anomalies in the steel truss bridges utilizing vehicle-induced vibrations. Observations through this study demonstrate feasibility of the proposed approach for real world applications.
Resumo:
This paper presents a seismic response investigation into a code designed concentrically braced frame structure that is subjected to but not designed for in-plan mass eccentricity. The structure has an accidental uneven distribution of mass in plan resulting in an increased torsional component of vibration. The level of inelasticity that key structural elements in plan mass asymmetric structures are subjected to is important when analysing their ability to sustain uneven seismic demands. In-plan mass asymmetry of moment resisting frame and shear wall type structures have received significant investigation, however, the plan asymmetric response of braced frame type structures is less well understood. A three-dimensional non-linear time history analysis (NLTHA) model is created to capture the torsional response of the plan mass asymmetric structure to quantify the additional ductility demand, interstorey drifts and floor rotations. Results show that the plan mass asymmetric structure performs well in terms of ductility demand, but poorly in terms of interstorey drifts and floor rotations when compared to the plan mass symmetric structure. New linear relationships are developed between the normalised ductility demand and normalised slenderness of the bracing on the sides of the plan mass symmetric/asymmetric structures that the mass is distributed towards and away from.