995 resultados para benzo [b] fluoranthene
Resumo:
以青藏高原的特有植物麻花艽为材料,研究麻花艽叶片抗氧化酶系统对增强UV-B辐射的响应.结果表明:在UV-B处理初期,麻花艽叶片SOD、POD的酶活性都能增加,但随着处理时间的延长,SOD、POD的活性呈现下降趋势.麻花艽叶片CAT的酶活性在UV-B处理后下降明显,但作为清除叶绿体中H2O2的关键酶AP的酶活性表现为明显地增加趋势,说明在对麻花艽叶片增强UV-B辐射反应中AP起有着重要作用.MDA的含量随UV-B处理时间延长而增加,表明UV-B降低了细胞内活性氧自由基的清除能力,膜脂过氧化作用加剧,导致了对麻花艽叶片的伤害效应.
Resumo:
以人工种植的多年生高山植物麻花艽( Gentiana straminea )为材料,在3个不同强度的UV-B辐射处理下,定时测定处理和对照叶片的净光合速率、表观量子效率和暗呼吸的变化.结果显示:UV-B处理对麻花艽叶片的光合作用在短期内有一定的抑制作用,但随着处理时间的增加,该高山植物能很快地适应强UV-B辐射的处理.表明麻花艽这种青藏高原常见的高山植物在长期的自然选择过程中可能已经形成了适应UV-B辐射的特有生理机制.暗呼吸的实验结果亦表明:在3种强度的UV-B辐射处理下,麻花艽叶片的呼吸作用从一开始就未受到抑制;随着UV-B辐射时间的增加,UV-B辐射强度越高,呼吸强度越强;这可能是 UV-B辐射并未引起麻花艽呼吸机构的破坏所致.
Resumo:
综述了UV-B辐射增强对植物光合作用的影响、植物对光破坏的响应与适应性方面的国内外研究进展,许多研究表明UV-B辐射增强对植物具有破坏作用且能引起植物光抑制、光氧化和光损伤,植物依靠自身修复系统而对其破坏又具有一定的适应性。
Resumo:
在高寒矮嵩草 (K obresia humilis)草甸地区以太阳短波辐射为背景 ,建立了人工增强 U V- B辐射的实验装置 ,每天增补 15 .8k J· m- 2 的辐射剂量 ,模拟平流层臭氧破坏约 5 %时近地表面太阳 UV- B辐射的增强。观测表明 :UV- B辐射的增强对麻花艽 (Gentiana straminea)植物的光合作用无明显的抑制或伤害作用。相反 ,在早晨补充UV- B辐射的短时间内 ,叶片的 Pn 随 Gs的增大而有所提高。随 UV- B辐射时间的延长 ,约在 11∶ 30~ 12∶ 30 ,Pn和Gs有所降低。U V- B辐射时间进一步延长后 (约 14∶ 0 0以后 ) ,处理和对照组叶片 Pn和 Gs的差异趋向不明显。增强太阳 UV- B辐射后 ,麻花艽叶片的光合色素并无明显变化 ,U V-B 吸收物质的含量也无明显变化。麻花艽叶片厚度的直接测量表明: 增强UV -B 辐射能明显提高叶片的厚度。叶片厚度的增加可补偿增强UV -B 辐射后引起的光合色素的光降解, 改善单位叶面积为基础的光合速率, 是高原植物对强UV-B 辐射的一种适应方式。
Resumo:
对不同海拔地区的太阳 UV- B辐射和植物叶片的光学特性进行了比较研究。结果表明 :位于高海拔地区的海北高寒草甸生态系统定位站 ,太阳 UV- B辐射明显高于相近纬度的西宁、兰州和南京地区。UV- B辐射与总辐射和 PAR的日变化规律相似 ,都受太阳高度角的直接影响 ,在当地太阳正午时最高。UV- B/Q的日变化也为单峰曲线 ,海北站地区的 UV- B/Q高于西宁的同期测定结果。对珠芽蓼等植物的研究表明 ,生长于海北站地区的珠芽蓼 ,其叶片中紫外线吸收物质的含量明显高于西宁的同种植物 ,也略高于海拔较高的达坂山和小达坂山山顶的同种植物。叶绿素含量以海北站珠芽蓼最低 ,达坂山和小达坂山的同种植物最高。珠芽蓼叶片中类胡萝卜素的含量以西宁最低, 海北站、达坂山和小达坂山依次升高。海北站矮嵩草与从海北站移植到西宁生长4年的同种植物相比, 叶片中紫外线吸收物质、叶绿素、类胡萝卜素的变化与生长于两地区的珠芽蓼相同。
Resumo:
在植物生长室中 ,黄瓜植株第 1片真叶出现后 ,用人工UV B光源照射 6 0d ,测定植物各叶位叶片的生长和生理活动 .结果表明 ,UV B辐射条件下 ,植物出叶时间被延迟 ;叶面积和叶干重下降 ,降幅与叶位高低正相关 ;叶片含水量降低 ,老龄叶片 (第 1叶 ,下位叶 )和幼龄叶片 (第 5叶 ,上位叶 )的水分降幅均高于成年叶片 (第 3叶 ,中位叶 ) ;叶片的伸展速度、叶片数目以及单叶面积减少 ,致使黄瓜总叶面积下降 ;植株节间长度缩短 ,是植株矮化的重要原因 ;根、茎、叶等器官之间的相关生长变化不大.叶片生长在其中起重要的协调作用. UV-B 降低Pn和EAQE ,对光合作用的抑制程度随叶位升高而增加. UV-B 辐射后,黄瓜叶片的光呼吸显著提高,增幅与叶片发育阶段有关. UV-B 对黄瓜第1叶的暗呼吸没有影响,第2 、3 叶略微下降,第4 叶显著升高. 分析认为,植株矮化和叶面积减少有利于植物适应UV-B辐射;水分含量和光合作用减少、呼吸作用增强是黄瓜生长受抑制的生理基础。
Resumo:
在植物生长室中,UV-B辐射明显降低黄瓜幼苗的根系活力,抑制程度随辐射时间的延长而增强.黄瓜和大豆幼苗的叶绿素和可溶性蛋白含量减少与UV-B辐射时间长短呈正相关,但是类胡萝卜素减少幅度不大.UV-B对Chlb的破坏较Chla严重,导致Chla b比值增大.UV-B虽增加大豆幼苗的SOD活性,但降低大豆幼苗的NR活性及其对温度变化的敏感性.分析认为,Chlab比值和SOD 活性升高,有助于植物对UV-B的适应。
Resumo:
UV - B 辐射明显降低大豆、豌豆和黄瓜3 种植物幼苗的净光合速率和量子效率, 降幅随UV - B辐射时间延长而增加, 是一定UV - B 强度下,UV - B 辐射剂量的累积效应。豌豆和大豆幼苗的暗呼吸速率受UV - B 辐射抑制, 其中, 豌豆叶片暗呼吸受抑程度与UV - B 辐射时间正相关。
Resumo:
Plants have an integral adaptive mechanism to solar UV -B radiation from plant morphology to physiological action and the formation of UV -B radiation absorption pigment is very significant. There is the close interrelation between plant adaptive mechanism and its origin and distribution, which has the profound molecular basis. It is important to strengthen study on the enhancing solar UV _ B radiation instead of being afraid of or optimistic about it in order to solve the uncertainties and make scientific decision.
Resumo:
On a reversed phase Hypersil BDS C-18 (200 mm x 4. 6 mm, 5 mu m) column, 20 amino acids, which were derivatized using 2-(11H-benzo [a] carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) as pre-column derivatization reagent, were separated in conjunction with a gradient elution. Optimum derivatization was obtained by reacting of amino acids with BCEC-Cl at room temperature for 5 min in the presence of sodium borate catalyst in acetonitrile solvent. The fluorescence excitation and emission wavelengths were 279 nm and 380 nm respectively. The identification of amino acid derivatives from hydrolyzed bovine serum albumin and bee pollen was carried out by post-column mass spectrometry with electrospray ion source in positive ion mode. Linear correlation coefficients of the amino acid derivatives were > 0.9990, and detection limits (at signal to noise of 3:1) were 1.49 - 19.74 fmol for the labeled amino acids.
Resumo:
A sensitive and efficient method for simultaneous determination of glutamic acid (Glu), gamma-amino-butyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat endbrains was developed by high-performance liquid chromatography (HPLC) with fluorescence detection and on-line mass spectrometric identification following derivatization with 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC). Different parameters which influenced derivatization and separation were optimized. The complete separation of five neurotransmitter (NT) derivatives was performed on a reversed-phase Hypersil BDS-C-18 column with a gradient elution. The rapid structure identification of five neurotransmitter derivatives was carried out by on-line mass spectrometry with electrospray ionization (ESI) source in positive ion mode, and the BCEOC-labeled derivatives were characterized by easy-to-interpret mass spectra. Stability of derivatives, repeatability, precision and accuracy were evaluated and the results were excellent for efficient HPLC analysis. The quantitative linear range of five neurotransmitters were 2.441-2 x 10(4) nM, and limits of detection were in the range of 0.398-1.258 nM (S/N = 3:1). The changes of their concentrations in endbrains of three rat groups were also studied using this HPLC fluorescence detection method. The results indicated that exhausting exercise could obviously influence the concentrations of neurotransmitters in rat endbrains. The established method exhibited excellent validity, high sensitivity and convenience, and provided a new technique for simultaneous analysis of monoamine and amino acid neurotransmitters in rat brain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The rye B chromosome is a supernumerary chromosome that increases in number in its host by directed postmeiotic drive. Two types of rye B chromosomes that had been introduced into common wheat were dissected into separate segments by the gametocidal system to produce a number of rearranged B chromosomes, such as telosomes, terminal deletions and translocations with wheat chromosomes. A total of 13 dissected B chromosomes were isolated in common wheat, and were investigated for their nondisjunction. properties. Rearranged B chromosomes, separated from their B-specific repetitive sequences on the distal part of the long arm, did not undergo nondisjunction, and neither did a translocated wheat chromosome carrying a long-arm distal segment containing the B-specific repetitive sequences. However, such rearranged B chromosomes, missing their B-specific sequences could undergo nondisjunction when they coexisted with the standard B chromosome or a wheat chromosome carrying the B-specific sequences. Deficiencies of the short arm did not completely abolish the nondisjunction properties of the B chromosome, but did reduce the frequency of nondisjunction. These results confirmed previous suggestions that the directed nondisjunction of the rye B chromosome is controlled by two elements, pericentromeric sticking sites and a trans-acting element carried at the distal region of the long arm of the B chromosome. Additionally, it is now shown that the distal region of the long arm of the B chromosome which provides this function is that which carries the B-specific repetitive sequences.
Resumo:
An LC method for the determination of 20 amino acids (AAs), using 1,2-Benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) as fluorescent labeling reagent, has been validated and applied for the analysis of AAs in rat plasma at three different states concerning exercise physiology. Identification of AA derivatives was carried out by LC-MS with electrospray ion (ESI), and the MS-MS cleavage mode of the representative tyrosine (Tyr) derivative was analyzed. Gradient elution on a Hypersil BDS C-18 column gave good separation of the derivatives. Excellent linear responses were observed and good compositional data could be obtained from as little as 50-200 mu L of plasma samples. The contents of 20 AAs in rat plasma of three groups (24 rats, group A: quiet state, group B: at exercising exhaust, group C: 12 h after exercising exhaust) exhibited evident difference corresponding to the physiological states. Facile BCEOC derivatization coupled with LC-FLD-ESI-MS analysis allowed the development of a highly sensitive method for the quantitative analysis of trace level of AAs from plasma or other biochemical samples.
Resumo:
The seed oil from Nitraria tangutorum samples was obtained by supercritical carbon dioxide extraction methods. The extraction parameters for this methodology, including pressure, temperature, particle size and extraction time, were optimized. The free fatty acids in the seed oil were separated with a pre-column derivation method and 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-p-toluenesulfonate (BDETS) as a labeling regent, followed by high-performance liquid chromatography (HPLC) with fluorescence detection. The target compounds were identified by mass spectrometry with atmospheric pressure chemical ionization (APCI in positive-ion mode). HPLC analysis shows that the main compositions of the seed oil samples were free fatty acids (FFAs) in high to low concentrations as follows: linoleic acid, oleic acid, hexadecanoic acid and octadecanoic acid. The assay detection limits (at signal-to-noise of 3:1) were 3.378-6.572 nmol/L. Excellent linear responses were observed, with correlation coefficients greater than 0.999. The facile BDETS derivatization coupled with mass spectrometry detection allowed the development of a highly sensitive method for analyzing free fatty acids in seed oil by supercritical CO2 extraction. The established method is highly efficient for seed oil extraction and extremely sensitive for fatty acid profile determination. (C) 2007 Elsevier B.V. All rights reserved.