997 resultados para basic blue 41
Resumo:
A considerable number of investigations have started to elucidate the essential roles biological agents play in the biodeterioration of stone. Chemical biocides are becoming increasingly banned because of the environmental and health hazards associated with these toxic substances. The present study reports the photodynamic effect of Methylene Blue (MB) and Nuclear Fast Red (NFR) in the presence of hydrogen peroxide (H2O2) on the destruction of the algae Chlorella vulgaris (C. vulgaris) under irradiation with visible light. Illumination of C. vulgaris in the presence of MB or NFR combined with H2O2 results in the decomposition of both the algal species and the photosensitizer. The photodynamic effect was investigated under aerobic and anaerobic conditions. Differences in mechanism type are reported and are dependent on both the presence and the absence of oxygen. The behavior of each photosensitizer leads to a Type II mechanism and a Type I/Type II combination for MB and NFR, respectively, being concluded. This novel combination could be effective for the remediation of biofilm-colonized stone surfaces.
Resumo:
The effects of high power pulsed laser light on a TiO2 photocatalyst have been investigated using a surface second harmonic generation (SSHG) sensor. When TiO2 is irradiated with a laser at 355mm a visible change in colour from white to dark blue crystals was observed. X-ray diffraction studies indicate that the crystal structure of the TiO2 developed a more rutile form following laser exposure.
Resumo:
We show that if E is an atomic Banach lattice with an ordercontinuous norm, A, B ∈ Lr(E) and MA,B is the operator on Lr(E) defined by MA,B(T) = AT B then ||MA,B||r = ||A||r||B||r but that there is no real α > 0 such that ||MA,B || ≥ α ||A||r||B ||r.
Resumo:
Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energy measurements are hampered by the low power sampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation.
We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via sta- tistical sampling, which overcomes the limitations of power sens- ing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and paral- lel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate two use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37% and an ocean modelling code by 33%, compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.
Resumo:
In this work, olive stone (OS) was utilized to investigate its capacity as biosorbent for methylene blue (MB) and Cr(III), which are usually present in textile industry effluents. Equilibrium and kinetic experiments were performed in batch experiments. The biosorption process followed pseudo-second-order kinetics. The equilibrium data were fitted with several models, but Langmuir and Sips models best reproduced the experimental results. Maximum biosorption capacities were 3.296 mg/g (0.0116 mmol/g) and 4.990 mg/g (0.0960 mmol/g) for MB and Cr(III), respectively. Several operation variables, such as
biosorbent mass, flow rate, and initial concentration on the removal of dye and metal, were evaluated in column system. The removal efficiency improved as OS mass increased and decreased when flow rate and initial concentration increased. Also, MB uptake was substantially decreased by increasing the initial concentration of Cr(III), ranging from 6.09 to 2.75 mg/g. These results show that the presence of Cr(III) significantly modifies the biosorption capacity of MB by the OS. These results suggest that OS is a potential low-cost food industry waste for textile industry wastewater treatment.
Resumo:
During benthic cultivation Mytilus edulis (blue mussels) are subject to predation pressure from a number of predators including Carcinus maenas (shore crabs). This predator can be responsible for substantial losses of mussels from the fishery and a full understanding of the predator–prey relationship between M. edulis and C. maenas is required to ensure attempts that reduce predatory pressure and subsequent commercial loss are successful. Whilst much work has examined the prey–predator size relationships between C. maenas and M. edulis, far less research has investigated how stress, such as periods of extended aerial exposure, may affect these relationships. We tested whether profit in terms of calories gained by crabs consuming mussels stressed by aerial exposure for 48 h differed from that of mussels at ambient conditions and whether being stressed affected the mussel's likelihood of predation. We also tested whether the size relationship between predators and their prey differed when mussels were stressed. We found that the profitability of prey (calories gained per second of handling time) did not vary between stressed and unstressed mussels. Handling times for stressed and unstressed mussels were similar, even when crabs were presented with mussels of the maximum size that they are able to consume. Small crabs were more likely to reject a mussel of preferred size if it was unstressed, suggesting that crabs may be able to assess that these mussels would require extra effort to break into and consume. Our findings suggest that the predator–prey relationship between mussels and crabs is not altered when mussels are stressed. C. maenas remains a voracious predator and regardless of the condition of mussels laid on commercial beds there is a need to control this predator in attempt to reduce losses in the benthic fishery.
Resumo:
Performance data for a dye based, regenerable oxygen sensor (Mills and Lawrie [1], Mills et al. [2]) are analyzed to develop useful kinetic models for sensor photoactivation (dye reduction) and dark, oxygen detection (dye oxidation). The titania loaded, thin film sensor exhibits an apparent first order photoactivation of the dye, which we demonstrate (Section 3.2 and Fig. 4) is due to a kinetic disguise of a zero order photoreaction occurring through a non-uniformly illuminated sensor film. The observed zero order, slow recovery due to dye oxidation by dioxygen (O2 detection) appears best rationalized by a model assuming a near O2-impermeable skin developing on the sensor surface as solvent is evaporatively removed following sensor film casting and curing.
Resumo:
Photodynamic therapy involves delivery of a photosensitising drug that is activated by light of a specific wavelength, resulting in generation of highly reactive radicals. This activated species can cause destruction of targeted cells. Application of this process for treatment of microbial infections has been termed "photodynamic antimicrobial chemotherapy" (PACT). In the treatment of chronic wounds, the delivery of photosensitising agents is often impeded by the presence of a thick hyperkeratotic/necrotic tissue layer, reducing their therapeutic efficacy. Microneedles (MNs) are an emerging drug delivery technology that have been demonstrated to successfully penetrate the outer layers of the skin, whilst minimising damage to skin barrier function. Delivering photosensitising drugs using this platform has been demonstrated to have several advantages over conventional photodynamic therapy, such as, painless application, reduced erythema, enhanced cosmetic results and improved intradermal delivery. The aim of this study was to physically characterise dissolving MNs loaded with the photosensitising agent, methylene blue and assess their photodynamic antimicrobial activity. Dissolving MNs were fabricated from aqueous blends of Gantrez(®) AN-139 co-polymer containing varying loadings of methylene blue. A height reduction of 29.8% was observed for MNs prepared from blends containing 0.5% w/w methylene blue following application of a total force of 70.56 N/array. A previously validated insertion test was used to assess the effect of drug loading on MN insertion into a wound model. Staphylococcus aureus, Escherichia coli and Candida albicans biofilms were incubated with various methylene blue concentrations within the range delivered by MNs in vitro (0.1-2.5 mg/mL) and either irradiated at 635 nm using a Paterson Lamp or subjected to a dark period. Microbial susceptibility to PACT was determined by assessing the total viable count. Kill rates of >96%, were achieved for S. aureus and >99% for E. coli and C. albicans with the combination of PACT and methylene blue concentrations between 0.1 and 2.5 mg/mL. A reduction in the colony count was also observed when incorporating the photosensitiser without irradiation, this reduction was more notable in S. aureus and E. coli strains than in C. albicans.
Resumo:
We propose and advocate basic principles for the fusion of incomplete or uncertain information items, that should apply regardless of the formalism adopted for representing pieces of information coming from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief functions or imprecise probabilities. We propose a general notion of information item representing incomplete or uncertain information about the values of an entity of interest. It is supposed to rank such values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting the results of the fusion process, such as relative information content and consistency of information items, as well as their mutual consistency, are discussed. For each representation setting, we present fusion rules that obey our principles, and compare them to postulates specific to the representation proposed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we show that the understanding of the set in terms of most plausible values, or in terms of non-impossible ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then we consider several formal settings for incomplete or uncertain information items, where our postulates are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief functions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules across various uncertainty representation settings.