996 resultados para basalt
Resumo:
This site was accidentally spudded on a small basement pinnacle and was abandoned when hard rock was reached within a few meters from the surface. The section penetrated consisted of coarse winnowed calcareous sand over thin chalk ooze resting on a hard crust of ferromanganese oxide presumably covering basalt.
Resumo:
During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.
Resumo:
The rate of accumulation of a ferromanganese coating on a fragment of pillow basalt was estimated using a variety of techniques. Unsupported 230 Th activity decrease in the oxide layer, K/A dating of the basalt, fission tracks dating of the glassy layer around the basalt, thickness of the palagonitization rind, and integrated 230 Th activity give ages from approximately 3 x 10-6 years to 5 x 10-3 years. Data suggest that the ferromanganese material formed rapidly (33 mm/10-6 years) and by hydrothermal or volcanic processes.
Resumo:
The DSDP/ODP Hole 504B, drilled in the 5.9 Ma southern flank of the Costa Rica Rift, represents the deepest section through modern ocean floor basaltic basement. The hole penetrates a 570 m thick volcanic zone, a 210 m thick transition zone of volcanic rocks and dykes, and 1056 m of dykes. A representative selection of these basalt types has been investigated with respect to Nd and Pb isotopes. The epsilonNd of the basalts varies from 7.62 to 11.16. This range in the Nd-isotope composition represents about 67% of the total range reported for Pacific MORB. The Pb-isotope composition also shows significant variation, with 206Pb/204Pb varying from 17.90 to 18.82. The isotopic data show that a small volume of enriched mantle existed in the source. The large ranges in isotopic composition in a single drill hole demonstrate the importance of small-scale mantle heterogeneities in the petrogenesis of MORB. Fractional melting and extraction of small magma batches by channelled flow, and small, short-lived crustal magma reservoirs, with limited potential for mixing of the mantle derived magmas, are favored by these isotopic data.
Resumo:
Recent revisions of the geological time scale by Kent and Gradstein (in press) suggest that, on the average, Cretaceous magnetic anomalies are approximately 10 m.y. older than in Larson and Hilde's (1975) previous time scale. These revised basement ages change estimates for the duration of alteration in the ocean crust, based on the difference between secondary-mineral isochron ages and magnetic isochron-crustal ages, from 3 to approximately 13 m.y. In addition to the revised time scale, Burke et al.'s (1982) new data on the temporal variation of 87Sr/86Sr in seawater allow a better understanding of the timing of alteration and more realistic determinations of water/rock ratios during seawater-basalt interaction. Carbonates from all DSDP sites which reached Layer 2 of Atlantic crust (Sites 105, 332, 417, and 418) are deposited within 10-15 m.y. of crustal formation from solutions with 87Sr/86Sr ratios identical to unaltered or contemporaneous seawater. Comparisons of the revised seawater curve with the 87Sr/86Sr of basement carbonates is consistent with a duration of approximately 10-15 m.y. for alteration in the ocean crust. Our preliminary Sr and 87Sr/86Sr data for carbonates from Hole 504B, on 5.9-m.y.-old crust south of the Costa Rica Rift, suggest that hydrous solutions from which carbonates precipitated contained substantial amounts of basaltic Sr. For this reason, carbonate 87Sr/86Sr cannot be used to estimate the duration of alteration at this site. A basalt-dominated alteration environment at Hole 504B is consistent with heat-flow evidence which indicates rapid sediment burial of crust at the Costa Rica Rift, sealing it from access by seawater and resulting in unusually low water/rock ratios during alteration.
Resumo:
Ne, Ar, Kr, Xe, and K2O were measured in representative samples of holocrystalline basalt from DSDP Hole 504B. No hiatus in inert gas abundance is recognized at the base of the "oxic" alteration zone and the extent rather than the nature of alteration appears to determine these abundances. When the inert gas abundances are separately plotted against K2O, two distinct trends of loss emerge, one for alteration involving K-gain, the other for K-loss. Apparent whole-rock K-Ar ages are anomalous in the upper 50 m of basement, and below 300 m sub-basement. In the intervening zone of basement, celadonization adds sufficient potassium and eliminates enough "primary" 40Ar early in the history of the basalts for "excess" 40Ar to become subordinate to radiogenic 40Ar in basalts showing potassium enrichment greater than 0.2%. Stratigraphically correct K-Ar ages are obtained, therefore, from K-enriched basalts of the oxic alteration zone.
Resumo:
Bulk chlorine concentrations and chlorine stable isotope compositions were determined for hydrothermally altered basalt (extrusive lavas and sheeted dikes) and gabbro samples (n = 50) from seven DSDP/ODP/IODP drill sites. These altered oceanic crust (AOC) samples span a range of crustal ages, tectonic settings, alteration type, and crustal depth. Bulk chlorine concentrations range from < 0.01 wt.% to 0.09 wt.%. In general, higher chlorine concentrations coincide with an increase in temperature of alteration and amphibole content. d37Cl values of whole rock AOC samples range from -1.4 to +1.8 per mil. High d37Cl values (>=~0.5 per mil) are associated with areas of higher amphibole content. This observation is consistent with theoretical calculations that estimate amphibole should be enriched in 37Cl compared to co-existing fluid. Negative to near zero d37Cl values are found in areas dominated by clay minerals. Chlorine geochemistry is a rough indicator of metamorphic grade and mineralogy. AOC is a major Cl host in the subducting oceanic lithospheric slab. Here we show that bulk chlorine concentrations are ~3 times higher than previous estimates resulting in a greater contribution of Cl to the mantle.
Resumo:
143Nd/144Nd ratios have been determined on 37 samples of oceanic basalt, with a typical precision of +/- 2-3 * 10**-5 (2 sigma). Ocean island and dredged and cored submarine basalts are included for which reliable measurements of 87Sr/86Sr ratios exist in the literature or have been measured as part of this study. A strong negative correlation exists between 143Nd/144Nd and 87Sr/86Sr ratios in basalts from Iceland and the Reykjanes Ridge, but such a clear correlation does not exist for samples from the Hawaiian Islands. However, when other ocean island basalts from the Atlantic are included there is an overall correlation between these two parameters. Increases and decreases in Rb/Sr in oceanic basalt source regions have in general been accompanied by decreases and increases respectively in Sm/Nd ratios. The compatibility of the data with single-stage models is assessed and it is concluded that enrichment and depletion events, which are consistent with transfer of silicate melts, are responsible for the observed variation.
Resumo:
87Sr/S6Sr ratios have been determined on eleven whole rock basalt samples from DSDP Leg 37. The 87Sr/S6Sr ratios range from 0.70305 +/- 4 to 0.70451 +/- 4 due to alteration and contamination with seawater Sr. Leaching with 5% HF has only a small effect on the 87Sr/86Sr of the samples. However, treatment with 6M HCl in acid digestion bombs at 130°C removes the contaminant more effectively. Altered plagioclase and olivine are dissolved during this process. The mean 87Sr/86Sr of four HCl-treated samples from hole 332A is 0.70299 and that for five samples from hole 332B is 0.70297. The 87Sr/86Sr ratios of treated samples from holes 333A and 335 are 0.70304 +/- 4 and 0.70316 +/- 4, respectively. These 87Sr/86Sr ratios are within the range observed for other basalts elsewhere along the Mid-Atlantic Ridge in the North Atlantic. REE distribution patterns have been determined for four samples, three from hole 332B and one from hole 335. CeN/YbN ratios range from 0.58 to 1.30 and do not correlate with 87Sr/86Sr ratios. The source regions of these basalts appear to have been variable in REE abundances.
Resumo:
Mineralogical (microprobe) and geochemical (X-ray fluorescence, neutron activation analyses) data are given for 18 samples of volcanic rocks from the Guatemala Trench area (Deep Sea Drilling Project Leg 67). Typical fresh oceanic tholeiites occur in the trench itself (Hole 500) and in its immediate vicinity on the Cocos Plate (Site 495). Several samples (often reworked) of "spilitic" oceanic tholeiites are also described from the Trench: their mineralogy (greenschist facies association - actinolite + plagioclase + chlorite) and geochemistry (alteration, sometimes linked to manganese and zinc mineralization) are shown to result from high-temperature (300°-475°C) hydrothermal sea water-basalt interactions. The samples studied are depleted in light rare-earth elements (LREE), with the exception of the slightly LREE-enriched basalts from Hole 500. The occurrence of such different oceanic tholeiites in the same area is problematic. Volcanic rocks from the Guatemala continental slope (Hole 494A) are described as greenschist facies metabasites (actinolite + epidote + chlorite + plagioclase + calcite + quartz), mineralogically different from the spilites exposed on the Costa Rica coastal range (Nicoya Peninsula). Their primary magmatic affinity is uncertain: clinopyroxene and plagioclase compositions, together with titanium and other hygromagmaphile element contents, support an "active margin" affinity. The LREE-depleted patterns encountered in the present case, however, are not frequently found in orogenic samples but are typical of many oceanic tholeiites.
Resumo:
In this study, fibre optic sensors (FOS) were used to investigate the interfacial stress-strain behaviour of bonded-in basalt fibre reinforced polymer (BFRP) rods loaded into glulam members. Pull-out tests were conducted to examine the effect of bonded length and load-to-grain direction on the distribution of stress at the BFRP rod/adhesive zone. It was observed that the stress concentration at the loaded end of the BFRP rod of the samples was significantly the highest while the unloaded end showed the lowest. Increasing the bonded length at the same loading configuration resulted in a decrease in stress concentration at the loaded end. The stress concentration at the loaded end of the perpendicular to the grain samples was relatively higher than that of the corresponding parallel to the grain samples.
Resumo:
[EN] The Canary Archipelago has long been a sensitive location to record climate changes of the past. Interbedded with its basalt lavas are marine deposits from the principal Pleistocene interglacials, as well as aeolian sands with intercalated palaeosols. The palaeosols contain African dust and innumerable relict egg pods of a temperate-region locust (cf. Dociostaurus maroccanus Thunberg 1815). New ecological and stratigraphical information reveals the geological history of locust plagues (or infestations) and their palaeoclimatic significance.
Resumo:
Terrestrial planets produce crusts as they differentiate. The Earth’s bi-modal crust, with a high-standing granitic continental crust and a low-standing basaltic oceanic crust, is unique in our solar system and links the evolution of the interior and exterior of this planet. Here I present geochemical observations to constrain processes accompanying crustal formation and evolution. My approach includes geochemical analyses, quantitative modeling, and experimental studies. The Archean crustal evolution project represents my perspective on when Earth’s continental crust began forming. In this project, I utilized critical element ratios in sedimentary records to track the evolution of the MgO content in the upper continental crust as a function time. The early Archean subaerial crust had >11 wt. % MgO, whereas by the end of Archean its composition had evolved to about 4 wt. % MgO, suggesting a transition of the upper crust from a basalt-like to a more granite-like bulk composition. Driving this fundamental change of the upper crustal composition is the widespread operation of subduction processes, suggesting the onset of global plate tectonics at ~ 3 Ga (Abstract figure). Three of the chapters in this dissertation leverage the use of Eu anomalies to track the recycling of crustal materials back into the mantle, where Eu anomaly is a sensitive measure of the element’s behavior relative to neighboring lanthanoids (Sm and Gd) during crustal differentiation. My compilation of Sm-Eu-Gd data for the continental crust shows that the average crust has a net negative Eu anomaly. This result requires recycling of Eu-enriched lower continental crust to the mantle. Mass balance calculations require that about three times the mass of the modern continental crust was returned into the mantle over Earth history, possibly via density-driven recycling. High precision measurements of Eu/Eu* in selected primitive glasses of mid-ocean ridge basalt (MORB) from global MORs, combined with numerical modeling, suggests that the recycled lower crustal materials are not found within the MORB source and may have at least partially sank into the lower mantle where they can be sampled by hot spot volcanoes. The Lesser Antilles Li isotope project provides insights into the Li systematics of this young island arc, a representative section of proto-continental crust. Martinique Island lavas, to my knowledge, represent the only clear case in which crustal Li is recycled back into their mantle source, as documented by the isotopically light Li isotopes in Lesser Antilles sediments that feed into the fore arc subduction trench. By corollary, the mantle-like Li signal in global arc lavas is likely the result of broadly similar Li isotopic compositions between the upper mantle and bulk subducting sediments in most arcs. My PhD project on Li diffusion mechanism in zircon is being carried out in extensive collaboration with multiple institutes and employs analytical, experimental and modeling studies. This ongoing project, finds that REE and Y play an important role in controlling Li diffusion in natural zircons, with Li partially coupling to REE and Y to maintain charge balance. Access to state-of-art instrumentation presented critical opportunities to identify the mechanisms that cause elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. My work here elucidates the elemental fractionation associated with plasma plume condensation during laser ablation and particle-ion conversion in the ICP.