989 resultados para bacterial adhesion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial cell adhesion molecule (EpCAM) is overexpressed in most solid cancers and is an ideal antigen for clinical applications in cancer diagnosis, prognosis, imaging, and therapy. Currently, most of the EpCAM-based diagnostic, prognostic, and therapeutic strategies rely on the anti-EpCAM antibody. However, the use of EpCAM antibody is restricted due to its large size and instability. In this study, we have successfully identified DNA aptamers that selectively bind human recombinant EpCAM protein. The aptamers can specifically recognize a number of live human cancer cells derived from breast, colorectal, and gastric cancers that express EpCAM but not bind to EpCAM-negative cells. Among the aptamer sequences identified, a hairpin-structured sequence SYL3 was optimized in length, resulting in aptamer sequence SYL3C. The Kd values of the SYL3C aptamer against breast cancer cell line MDA-MB-231 and gastric cancer cell line Kato III were found to be 38±9 and 67±8 nM, respectively, which are better than that of the full-length SYL3 aptamer. Flow cytometry analysis results indicated that the SYL3C aptamer was able to recognize target cancer cells from mixed cells in cell media. When used to capture cancer cells, up to 63% cancer cell capture efficiency was achieved with about 80% purity. With the advantages of small size, easy synthesis, good stability, high binding affinity, and selectivity, the DNA aptamers reported here against cancer biomarker EpCAM will facilitate the development of novel targeted cancer therapy, cancer cell imaging, and circulating tumor cell detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tariq worked in the area of electronic textiles. He coated polyester fabric and PVDF films with polypyrrole. Plasma treatment was used to improve binding of coatings over the surface. He investigated in detail, the factors responsible for adhesion improvement using XPS, AFM, SEM, contact angle, abrasion tests and conductivity measurements. Different plasma gases, plasma power and plasma modes were investigated to get optimum bonding data. His investigations pointed towards improved surface oxygen functionalization and suitable surface morphology for improved bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stenotrophomonas maltophilia is an important nosocomial pathogen with intrinsic resistance to multiple antibiotics. Previous investigations have shown flavanols from black tea to possess antibacterial activity. This study describes the determination of minimum inhibitory concentrations and minimum bactericidal concentration for theaflavin independently and in formulations with the polyphenols epicatechin and quercetin against nine clinical isolates of Stenotrophomonas maltophilia and the control isolate NCTC 130141 via the microtitre assay. The results demonstrate that theaflavin has strong antibacterial activity and also shows significant synergism with epicatechin and quercetin. The minimum inhibitory concentrations of the isolates range between 200-400 g/mL for theaflavin and 100-200 g/mL for both theaflavin:epicatechin and theaflavin:quercetin combinations. The minimum bactericidal concentrations were discovered to be a 2 fold increase on those of the minimum inhibitory concentrations. The research highlights the potential use of polyphenols for the clinical treatment of highly antibiotic resistant bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an innovative and simple, soft UV lithographic method “FIll-Molding In Capillaries” (FIMIC) that combines soft lithography with capillary force driven filling of micro-channels to create smooth hydrogel substrates with a 2D micro-pattern on the surface. The lithographic procedure involves the molding of a polymer; in our case a bulk PEG-based hydrogel, via UV-curing from a microfabricated silicon master. The grooves of the created regular line pattern are consequently filled with a second hydrogel by capillary action. As a result, a smooth surface is obtained with a well-defined pattern design of the two different polymers on its surface. The FIMIC method is very versatile; the only prerequisite is that the second material is liquid before curing in order to enable the filling process. In this specific case we present the proof of principle of this method by applying two hydrogels which differ in their crosslinking density and therefore in their elasticity. Preliminary cell culture studies on the fabricated elasticity patterned hydrogels indicate the preferred adhesion of the cells to the stiffer regions of the substrates, which implies that the novel substrates are a very useful platform for systematic cell migration studies, e.g. more fundamental investigation of the concept of “durotaxis”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, society has been increasingly concerned with bacteria that are no longer susceptible to commercial antibiotics. Faced with a lack of tools, medical practitioners today are forced to prescribe medicines that, although effective, cause as much harm to the patient as the principal infection. The purpose of this research project is to develop novel antibacterials that remain potent against bacterial infections without being toxic to the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica nanoparticles were applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous tissue scaffold by an electrostatic layer-by-layer self-assembly technique. The nanoparticle layer was found to improve the fiber wettability and surface roughness. Osteoblast cells were cultured on the fibrous scaffolds to evaluate the biological compatibility. The silica nanoparticle coated scaffold showed enhanced cell attachment, proliferation, and alkaline phosphatase activities. The overall results suggested that interbonded fibrous scaffold with silica nanoparticulate coating could be a promising scaffolding candidate for various applications in bone repair and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study developed new methodologies to enhance the performance of carbon fiber in epoxy-based composites. A unique interdisciplinary approach of organic chemistry and engineering resulting in excellent real world outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of circulating tumor cells (CTCs) in disease diagnosis, prognosis, monitoring of the therapeutic efficacy, and clinical decision making is immense and has attracted tremendous focus in the last decade. We designed and fabricated simple, flat channel microfluidic devices polydimethylsiloxane (PDMS based) functionalized with locked nucleic acid (LNA) modified aptamers (targeting epithelial cell adhesion molecule (EpCAM) and nucleolin expression) for quick and efficient capture of CTCs and cancer cells. With optimized flow rates (10 μl/min), it was revealed that the aptamer modified devices offered reusability for up to six times while retaining optimal capture efficiency (>90%) and specificity. High capture sensitivity (92%) and specificity (100%) was observed in whole blood samples spiked with Caco-2 cells (10-100 cells/ml). Analysis of blood samples obtained from 25 head and neck cancer patients on the EpCAM LNA aptamer functionalized chip revealed that an average count of 5 ± 3 CTCs/ml of blood were captured from 22/25 samples (88%). EpCAM intracellular domain (EpICD) immunohistochemistry on 9 oral squamous cell carcinomas showed the EpICD positivity in the tumor cells, confirming the EpCAM expression in CTCs from head and neck cancers. These microfluidic devices also maintained viability for in vitro culture and characterization. Use of LNA modified aptamers provided added benefits in terms of cost effectiveness due to increased reusability and sustainability of the devices. Our results present a robust, quick, and efficient CTC capture platform with the use of simple PDMS based devices that are easy to fabricate at low cost and have an immense potential in cancer diagnosis, prognosis, and therapeutic planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL) proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM) models were developed for predicting HbL proteins based upon amino acid composition (AC), dipeptide composition (DC), hybrid method (AC + DC), and position specific scoring matrix (PSSM). In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM) profiles. The average accuracy, standard deviation (SD), false positive rate (FPR), confusion matrix, and receiver operating characteristic (ROC) were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction.