983 resultados para autoregressive models
Resumo:
We consider the asymptotics of the invariant measure for the process of spatial distribution of N coupled Markov chains in the limit of a large number of chains. Each chain reflects the stochastic evolution of one particle. The chains are coupled through the dependence of transition rates on the spatial distribution of particles in the various states. Our model is a caricature for medium access interactions in wireless local area networks. Our model is also applicable in the study of spread of epidemics in a network. The limiting process satisfies a deterministic ordinary differential equation called the McKean-Vlasov equation. When this differential equation has a unique globally asymptotically stable equilibrium, the spatial distribution converges weakly to this equilibrium. Using a control-theoretic approach, we examine the question of a large deviation from this equilibrium.
Resumo:
The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. In addition, we generalise the PDG numbering scheme to reflect the properties of the particles. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a novel approach to represent transients using spectral-domain amplitude-modulated/frequency -modulated (AM-FM) functions. The model is applied to the real and imaginary parts of the Fourier transform (FT) of the transient. The suitability of the model lies in the observation that since transients are well-localized in time, the real and imaginary parts of the Fourier spectrum have a modulation structure. The spectral AM is the envelope and the spectral FM is the group delay function. The group delay is estimated using spectral zero-crossings and the spectral envelope is estimated using a coherent demodulator. We show that the proposed technique is robust to additive noise. We present applications of the proposed technique to castanets and stop-consonants in speech.
Resumo:
Parabolized stability equation (PSE) models are being deve loped to predict the evolu-tion of low-frequency, large-scale wavepacket structures and their radiated sound in high-speed turbulent round jets. Linear PSE wavepacket models were previously shown to be in reasonably good agreement with the amplitude envelope and phase measured using a microphone array placed just outside the jet shear layer. 1,2 Here we show they also in very good agreement with hot-wire measurements at the jet center line in the potential core,for a different set of experiments. 3 When used as a model source for acoustic analogy, the predicted far field noise radiation is in reasonably good agreement with microphone measurements for aft angles where contributions from large -scale structures dominate the acoustic field. Nonlinear PSE is then employed in order to determine the relative impor-tance of the mode interactions on the wavepackets. A series of nonlinear computations with randomized initial conditions are use in order to obtain bounds for the evolution of the modes in the natural turbulent jet flow. It was found that n onlinearity has a very limited impact on the evolution of the wavepackets for St≥0. 3. Finally, the nonlinear mechanism for the generation of a low-frequency mode as the difference-frequency mode 4,5 of two forced frequencies is investigated in the scope of the high Reynolds number jets considered in this paper.
Resumo:
N-gram language models and lexicon-based word-recognition are popular methods in the literature to improve recognition accuracies of online and offline handwritten data. However, there are very few works that deal with application of these techniques on online Tamil handwritten data. In this paper, we explore methods of developing symbol-level language models and a lexicon from a large Tamil text corpus and their application to improving symbol and word recognition accuracies. On a test database of around 2000 words, we find that bigram language models improve symbol (3%) and word recognition (8%) accuracies and while lexicon methods offer much greater improvements (30%) in terms of word recognition, there is a large dependency on choosing the right lexicon. For comparison to lexicon and language model based methods, we have also explored re-evaluation techniques which involve the use of expert classifiers to improve symbol and word recognition accuracies.
Resumo:
There are many popular models available for classification of documents like Naïve Bayes Classifier, k-Nearest Neighbors and Support Vector Machine. In all these cases, the representation is based on the “Bag of words” model. This model doesn't capture the actual semantic meaning of a word in a particular document. Semantics are better captured by proximity of words and their occurrence in the document. We propose a new “Bag of Phrases” model to capture this discriminative power of phrases for text classification. We present a novel algorithm to extract phrases from the corpus using the well known topic model, Latent Dirichlet Allocation(LDA), and to integrate them in vector space model for classification. Experiments show a better performance of classifiers with the new Bag of Phrases model against related representation models.
Resumo:
Using continuous and near-real time measurements of the mass concentrations of black carbon (BC) aerosols near the surface, for a period of 1 year (from January to December 2006) from a network of eight observatories spread over different environments of India, a space-time synthesis is generated. The strong seasonal variations observed, with a winter high and summer low, are attributed to the combined effects of changes in synoptic air mass types, modulated strongly by the atmospheric boundary layer dynamics. Spatial distribution shows much higher BC concentration over the Indo-Gangetic Plain (IGP) than the peninsular Indian stations. These were examined against the simulations using two chemical transport models, GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) and CHIMERE for the first time over Indian region. Both the model simulations significantly deviated from the measurements at all the stations; more so during the winter and pre-monsoon seasons and over mega cities. However, the CHIMERE model simulations show better agreement compared with the measurements. Notwithstanding this, both the models captured the temporal variations; at seasonal and subseasonal timescales and the natural variabilities (intra-seasonal oscillations) fairly well, especially at the off-equatorial stations. It is hypothesized that an improvement in the atmospheric boundary layer (ABL) parameterization scheme for tropical environment might lead to better results with GOCART.
Resumo:
Transient signals such as plosives in speech or Castanets in audio do not have a specific modulation or periodic structure in time domain. However, in the spectral domain they exhibit a prominent modulation structure, which is a direct consequence of their narrow time localization. Based on this observation, a spectral-domain AM-FM model for transients is proposed. The spectral AM-FM model is built starting from real spectral zero-crossings. The AM and FM correspond to the spectral envelope (SE) and group delay (GD), respectively. Taking into account the modulation structure and spectral continuity, a local polynomial regression technique is proposed to estimate the GD function from the real spectral zeros. The SE is estimated based on the phase function computed from the estimated GD. Since the GD estimation is parametric, the degree of smoothness can be controlled directly. Simulation results based on synthetic transient signals generated using a beta density function are presented to analyze the noise-robustness of the SEGD model. Three specific applications are considered: (1) SEGD based modeling of Castanet sounds; (2) appropriateness of the model for transient compression; and (3) determining glottal closure instants in speech using a short-time SEGD model of the linear prediction residue.