1000 resultados para atomic clock


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spin waves of the triangular skyrmion crystal that emerges in a two-dimensional spin lattice model as a result of the competition between Heisenberg exchange, Dzyalonshinkii–Moriya interactions, Zeeman coupling and uniaxial anisotropy. The calculated spin wave bands have a finite Berry curvature that, in some cases, leads to non-zero Chern numbers, making this system topologically distinct from conventional magnonic systems. We compute the edge spin-waves, expected from the bulk-boundary correspondence principle, and show that they are chiral, which makes them immune to elastic backscattering. Our results illustrate how topological phases can occur in self-generated emergent superlattices at the mesoscale.