988 resultados para atlantic multidecadal oscillation
Resumo:
Marine radiocarbon bomb-pulse time histories of annually resolved archives from temperate regions have been underexploited. We present here series of Delta C-14 excess from known-age annual increments of the long-lived bivalve mollusk Arctica islandica from 4 sites across the coastal North Atlantic (German Bight, North Sea; Tromso, north Norway; Siglufjordur, north Icelandic shelf; Grimsey, north Icelandic shelf) combined with published series from Georges Bank and Sable Bank (NW Atlantic) and the Oyster Ground (North Sea). The atmospheric bomb pulse is shown to be a step-function whose response in the marine environment is immediate but of smaller amplitude and which has a longer decay time as a result of the much larger marine carbon reservoir. Attenuation is determined by the regional hydrographic setting of the sites, vertical mixing, processes controlling the isotopic exchange of C-14 at the air-sea boundary, C-14 content of the freshwater flux, primary productivity, and the residence time of organic matter in the sediment mixed layer. The inventories form a sequence from high magnitude-early peak (German Bight) to low magnitude-late peak (Grimsey). All series show a rapid response to the increase in atmospheric Delta C-14 excess but a slow response to the subsequent decline resulting from the succession of rapid isotopic air-sea exchange followed by the more gradual isotopic equilibration in the mixed layer due to the variable marine carbon reservoir and incorporation of organic carbon from the sediment mixed layer. The data constitute calibration series for the use of the bomb pulse as a high-resolution dating tool in the marine environment and as a tracer of coastal ocean water masses.
Resumo:
The impact of ancient fertilization practices on the biogeochemistry of arable soils on the remote Scottish island of Hirta, St Kilda was investigated. The island was relatively unusual in that the inhabitants exploited seabird colonies for food, enabling high population densities to be sustained on a limited, and naturally poor, soil resource. A few other Scottish islands, the Faeroes and some Icelandic Islands, had similar cultural dependence on seabirds. Fertilization with human and animal waste streams (mainly peat ash and bird carcases) on Hirta over millennia has led to over-deepened, nutrient-rich soils (plaggen). This project set out to examine if this high rate of fertilization had adversely impacted the soil, and if so, to determine which waste streams were responsible. Arable soils were considerably elevated in Pb and Zn compared to non-arable soils. Using Pb isotope signatures and analysis of the waste streams, it was determined that this pollution came from peat and turf ash (Pb and Zn) and from bird carcases (Zn). This was also confirmed by (13)C and (15)N analysis of the profiles which showed that soil organic matter was highly enriched in marine-derived C and N compared to non-arable soils. The pollution of such a remote island may be typical of other 'bird culture' islands, and peat ash contamination of marginal arable soils at high latitudes may be widespread in terms of geographical area, but less intense at specific locations due to lower population densities than on Hirta.
Resumo:
It is now accepted that changes in the Earth’s climate are having a profound effect on the distributions of a wide variety of species. One aspect of these changes that has only recently received any attention, however, is their potential effect on levels of within-species genetic diversity. Theoretical, empirical and modelling studies suggest that the impact of trailing-edge population extirpation on range-wide intraspecific diversity will be most pronounced in species that harbour the majority of their genetic variation at low latitudes as a result of changes during the Quaternary glaciations. In the present review, I describe the historical factors that have determined current patterns of genetic variation across the ranges of Northern North Atlantic species, highlight the fact that the majority of these species do indeed harbour a disproportionate level of genetic diversity in rear-edge populations, and outline how combined species distribution modelling and genetic analyses can provide insights into the potential effects of climate change on their overall genetic diversity.
Resumo:
Little is known about the microevolutionary processes shaping within river population genetic structure of aquatic organisms characterized by high levels of homing and spawning site fidelity. Using a microsatellite panel, we observed complex and highly significant levels of intrariver population genetic substructure and Isolation-by-Distance, in the Atlantic salmon stock of a large river system. Two evolutionary models have been considered explaining mechanisms promoting genetic substructuring in Atlantic salmon, the member-vagrant and metapopulation models. We show that both models can be simultaneously used to explain patterns and levels of population structuring within the Foyle system. We show that anthropogenic factors have had a large influence on contemporary population structure observed. In an analytical development, we found that the frequently used estimator of genetic differentiation, F-ST, routinely underestimated genetic differentiation by a factor three to four compared to the equivalent statistic Jost's D-est (Jost 2008). These statistics also showed a near-perfect correlation. Despite ongoing discussions regarding the usefulness of "adjusted" F-ST statistics, we argue that these could be useful to identify and quantify qualitative differences between populations, which are important from management and conservation perspectives as an indicator of existence of biologically significant variation among tributary populations or a warning of critical environmental damage.
Resumo:
The skin of fish is the first line of defense against pathogens and parasites. The skin transcriptome of the Atlantic salmon is poorly characterized, and currently only 2,089 expressed sequence tags (ESTs) out of a total of half a million sequences are generated from skin-derived cDNA libraries. The primary aim of this study was to enhance the transcriptomic knowledge of salmon skin by using next-generation sequencing (NGS) technology, namely the Roche-454 platform. An equimolar mixture of high-quality RNA from skin and epidermal samples of salmon reared in either freshwater or seawater was used for 454-sequencing. This technique yielded over 600,000 reads, which were assembled into 34,696 isotigs using Newbler. Of these isotigs, 12 % had not been sequenced in Atlantic salmon, hence representing previously unreported salmon mRNAs that can potentially be skin-specific. Many full-length genes have been acquired, representing numerous biological processes. Mucin proteins are the main structural component of mucus and we examined in greater detail the sequences we obtained for these genes. Several isotigs exhibited homology to mammalian mucins (MUC2, MUC5AC and MUC5B). Mucin mRNAs are generally > 10 kbp and contain large repetitive units, which pose a challenge towards full-length sequence discovery. To date, we have not unearthed any full-length salmon mucin genes with this dataset, but have both N- and C-terminal regions of a mucin type 5. This highlights the fact that, while NGS is indeed a formidable tool for sequence data mining of non-model species, it must be complemented with additional experimental and bioinformatic work to characterize some mRNA sequences with complex features.
Resumo:
Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2a phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2a. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.
Resumo:
Magnetic properties of eight particle size ranges from nine locations in Iceland and 26 locations in southern Greenland reveal the importance of source variation for our understanding of paleomagnetic and environmental magnetic records in the marine environment. These terrestrial samples show varying degrees of particle size dependence with all samples showing that the silt fraction possesses greater concentrations of ferrimagnetic minerals than either clay or sand. Fine pseudo-single domain (PSD) size magnetic grains dominate the magnetic assemblage of all Icelandic fractions. In contrast, Greenlandic samples possess greater variation in magnetic grain size; only fine silt and clay are as magnetically fine as the Icelandic PSD grains, while Greenlandic silts and sands are dominated by coarser PSD and multi-domain grains. These observations from potential marine sediment sources suggest that the silt size fraction is a likely driver for much of the concentration-dependent parameters derived from bulk magnetic records and that the magnetic grain size of the silt fraction can be used to discriminate between Icelandic and Greenlandic sources. Using these results to examine magnetic grain size records from marine sediment cores collected across the northern North Atlantic suggests that source, not just transport-controlled physical grain-size, has a significant impact on determining the magnetic grain size at a particular location. Homogeneity of magnetic grain size in Icelandic sediments at least partially explains the consistent quality of paleomagnetic records derived from cores surrounding Iceland and their ability to buffer large environmental changes. © 2013 Elsevier B.V.
Resumo:
Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.