986 resultados para aspergillus flavus
Resumo:
This is the twenty-second of a series of symposia devoted to talks and posters by students about their biochemical engineering research. The first, third, fifth, ninth, twelfth, sixteenth, and twenti~th were hosted by Kansas State University, the second and fourth by the University of Nebraska- Lincoln, the sixth, seventh, tenth, thirteenth, seventeenth, and twenty-second by Iowa State University, the eighth, fourteenth, and nineteenth by the University of Missouri-Columbia, the eleventh, fifteenth, and twenty-first by Colorado State University, and the eighteenth by the University of Colorado. Next year's symposium will be at the University of Oklahoma. Symposium proceedings are edited and issued by faculty of the host institution. Because final publication usually takes place in refereed journals, articles included here are brief and often cover work in progress. ContentsC. A. Baldwin, J.P. McDonald, and L. E. Erickson, Kansas State University. Effect of Hydrocarbon Phase on Kinetic and Transport Limitations for Bioremediation of Microporous Soil J. C. Wang, S. K. Banerji, and Rakesh Bajpai, University of Missouri-Columbia. Migration of PCP in Soil-Columns in Presence of a Second Organic Phase Cheng-Hsien Hsu and Roger G. Harrison, University of Oklahoma. Bacterial Leaching of Zinc and Copper from Mining Wastes James A. Searles, Paul Todd, and Dhinakar S. Kompala, University of Colorado. Suspension Culture of Chinese Hamster Ovary Cells Utilizing Inclined Sedimentation Ron Beyerinck and Eric H. Dunlop, Colorado State University. The Effect of Feed Zone Turbulence as Measured by Laser Doppler Velocimetry on Baker's Yeast Metabolism in a Chemostat Paul Li-Hong Yeh, GraceY. Sun, Gary A. Weisman, and Rakesh Bajpai, University of Missouri-Columbia. Effect of Medium Constituents upon Membrane Composition of Insect Cells R. Shane Gold, M. M. Meagher, R. Hutkins, and T. Conway, University of Nebraska-Lincoin. Ethanol Tolerance and Carbohydrate Metabolism in Lactobacilli John Sargantanis and M. N. Karim, Colorado State University. Application of Kalman Filter and Adaptive Control in Solid Substrate Fermentation D. Vrana, M. Meagher, and R. Hutkins, University of Nebraska-Lincoln. Product Recovery Optimization in the ABE Fermentation Kalyan R. Tadikonda and Robert H. Davis, University of Colorado. Cell Separations Using Targeted Monoclonal Antibodies Against Surface Proteins Meng H. Heng and Charles E. Glatz, Iowa State University. Charged Fusion for Selective Recovery of B-Galactosidase from Cell Extract Using Hollow Fiber Ion-Exchange Membrane Adsorption Hsiu-Mei Chen, Peter J. Reilly, and Clark Ford, Iowa State University. Site-Directed Mutagenesis to Enhance Thermostability of Glucoamylase from Aspergillus: A Rational Approach P. Tuitemwong, L. E. Erickson, and D. Y. C. Fung, Kansas State University. Applications of Enzymatic Hydrolysis and Fermentation on the Reduction of Flatulent Sugars in the Rapid Hydration Hydrothermal Cooked Soy Milk Sanjeev Redkar and Robert H. Davis, University of Colorado. Crossflow Microfiltration of Yeast Suspensions Linda Henk and James C. Linden, Colorado State University, and Irving C. Anderson, Iowa State University. Evaluation of Sorghum Ensilage as an Ethanol Feedstock Marc Lipovitch and James C. Linden, Colorado State University. Stability and Biomass Feedstock Pretreatability for Simultaneous Saccharification and Fermentation Ali Demirci, Anthony L. Pometto Ill, and Kenneth E. Johnson, Iowa State University. Application of Biofilm Reactors in Lactic Acid Fermentation Michael K. Dowd, Peter I. Reilly, and WalterS. Trahanovsky, Iowa State University. Low Molecular-Weight Organic Composition of Ethanol Stillage from Corn Craig E. Forney, Meng H. Heng, John R. Luther, Mark Q. Niederauer, and Charles E. Glatz, Iowa State University. Enhancement of Protein Separation Using Genetic Engineering J. F. Shimp, J. C. Tracy, E. Lee, L. C. Davis, and L. E. Erickson, Kansas State University. Modeling Contaminant Transport, Biodegradation and Uptake by Plants in the Rhizosphere Xiaoqing Yang, L. E. Erickson, and L. T. Fan, Kansas State University. Modeling of Dispersive-Convective Characteristics in Bioremediation of Contaminated Soil Jan Johansson and Rakesh Bajpai, University of Missouri-Columbia. Fouling of Membranes J. M. Wang, S. K. Banerji, and R. K. Bajpai, University of Missouri-Columbia. Migration of Sodium-Pentachorophenol (Na-PCP) in Unsaturated and Saturated Soil-Columns J. Sweeney and M. Meagher, University of Nebraska-Lincoln. The Purification of Alpha-D-Glucuronidase from Trichoderma reesei
Resumo:
One of the key objectives of Deep Sea Drilling Project (DSDP) Leg 75 was to shed light on the underlying causes of Cretaceous oceanic anoxia in the South Atlantic by addressing two major hypotheses: productivity productivity-driven anoxia vs. enhanced ocean stratification leading to preservation of organic matter and black shale deposition. Here we present a detailed geochemical dataset from sediments deposited during the Cenomanian/Turonian (C/T) transition and the global oceanic anoxic event 2 (OAE 2) at DSDP Site 530A, located off-shore Namibia (southeast Angola Basin, north of Walvis Ridge). To characterise the succession of alternating black and green shales at this site and to reconstruct the evolution of their paleoenvironmental setting, we have combined data derived from investigations on bulk organic matter, biomarkers and the inorganic fraction. The location of the C/T boundary itself is biostratigraphically not well constrained due to the carbonate-poor (but organic matter-rich) facies of these sediments. The bulk d13Corg record and compound-specific d13C data, in combination with published as well as new biostratigraphic data, enabled us to locate more precisely the C/T boundary at DSDP Site 530A. The compound-specific d13C record is the first of this kind reported from C/T black shales in the South Atlantic. It is employed for paleoenvironmental reconstructions and chemostratigraphic correlation to other C/T sections in order to discuss the paleoceanographic aspects and implications of the observations at DSDP Site 530A in a broader context, e.g., with regard to the potential trigger mechanisms of OAE 2, global changes in black shale deposition and climate. On a stratigraphic level, an approximation and monitoring of the syndepositional degree of oxygen depletion within the sediments/bottom waters in comparison to the upper water column is achieved by comparing normalised concentrations of redox-sensitive trace elements with the abundance of highly source specific molecular compounds. These biomarkers are derived from photoautotrophic and simultaneously anoxygenic green sulphur bacteria (Chlorobiacea) and are interpreted as paleoindicators for events of photic zone euxinia. In contrast to a number of other OAE 2 sections that are characterised by continuous black shale sequences, DSDP Site 530A represents a highly dynamic setting where newly deposited black shales were repeatedly exposed to conditions of subtle bottom water re-oxidation, presumably leading to their progressive alteration into green shales. The frequent alternation between both facies and the related anoxic to slight oxygenated conditions can be best explained by variations in vertical extent of an oxygen minimum zone in response to changes in a highly productive western continental margin setting driven by upwelling.
Resumo:
The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularide A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing besides higher production levels faster growth and differences in pellet formation. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of this fungus and its mutant. For this purpose, an optimised protein extraction protocol was established. Here, we show the first proteome study of a marine fungus. In total, 4759 proteins were identified. The central metabolic pathway of LF580 could be mapped by using KEGG pathway analysis and GO annotation. Using iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to a limited nutrient availability in wild type strain due to a strong pellet formation. This information can be applied to optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.
Resumo:
The latest Campanian-earliest Maastrichtian interval is well known as a period of intense climate cooling. This cooling caused a distinctive bipolar biogeographic distribution of calcareous nannofossil assemblages: High latitude settings were dominated by newly evolving endemic taxa, former cosmopolitan species disappeared at the same time and equatorial communities experienced an invasion of cool water taxa. The impact of this cooling on northern mid-latitude assemblages is, however, less well known. In order to overcome this gap we studied the Kronsmoor section (northwest Germany). This section provides a continuous upper Campanian - lower Maastrichtian succession with moderately to well preserved nannofossils. Uppermost Campanian assemblages are dominated by Prediscosphaera cretacea; other common taxa include Prediscosphaera stoveri, Watznaueria barnesiae and Micula staurophora. The lower Maastrichtian is characterized by lower numbers of P. cretacea and frequent Kamptnerius magnificus, Arkhangelskiella cymbiformis and Cribrosphaerella ehrenbergii. These changes reflect, in part, the Campanian-Maastrichtian boundary cooling since some successful taxa (e.g. K. magnificus) are related to cool surface waters. Other shifts in the nannofossil communities were perhaps the result of a changing nutrient regime. Stronger latitudinal gradients may have increased wind velocities and thus the eolian input of ferruginous dust required by N-fixing bacteria. The enhanced high latitude deep-water formation probably changed the bottom-water environment in disfavor of denitrificating organisms. A decline of chemical weathering and fluviatile transport may have reduced the amount of bioavailable phosphate. These processes led to an increased nitrate and a decreased phosphate content shifting the nutrient regime from nitrate towards phosphate limitation.