986 resultados para activation energy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples of electrolytic tough pitch (ETP) pure copper were subjected to 12 passes of Equal-Channel Angular Pressing (ECAP) at room temperature with and without back pressure. Subsequent annealing was performed to evaluate the influence of back pressure during ECAP on the thermal behavior of ultrafine-grained copper. The microstructural and hardness changes caused by annealing were characterized by orientation imaging microscopy (OIM) and microhardness measurements. The application of back pressure resulted in an earlier drop in hardness upon annealing, which is believed to be associated with a lower critical temperature for the initiation of recrystallization and a rapid coarsening of microstructure. Regardless of whether back pressure was applied or not, structure coarsening during short-time annealing of ECAP-processed copper was governed by discontinuous static recrystallization. This is seen as a result of microstructure heterogeneity. Analysis of recrystallization kinetics was carried out based on observations of the microstructure after annealing in terms of the Avrami equation. The magnitude of the apparent activation energies for recrystallization in the absence of back pressure and in the case of back pressure of 100 MPa was estimated to be ~99 kJ/mol and ~91 kJ/mol, respectively. The reasons for reduced activation energy in the case of processing with back pressure are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel model for calculating dehydrochlorination kinetics at a lower temperature of chlorinated natural rubber (CNR) is presented. It has been observed that dehydrochlorination is complex and involves three different stages. A model that accounts for dehydrochlorination at lower temperature is proposed. The kinetic parameters are obtained from dehydrochlorination experiments at 60-90 °C. The results of the kinetic calculation show that the apparent activation energy decreases with an increment of chlorine content. Higher chlorine content CNR makes it easier to remove hydrochloric acid when heated, but its dehydrochlorination rate affected by temperature is significantly less than that of the sample with a lower chlorine content. The thermogravimetric/derivative thermogravimetry results show that the beginning temperature of thermo-oxidative degradation rises with the increment of chlorine content. During the heating process, the higher chlorine content CNR is more stable than the lower one. The results suggest the storage conditions and basis for selection of appropriate temperature for the preparation of CNR from latex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is important to find alternative membranes to the state-of-the-art polybenzimidazole based high temperature proton exchange membranes with high proton conductivity at elevated temperature but with simple synthesis procedures. In this work, inorganic-organic nanostructured hybrid membranes are developed based on a polyethersulfone-polyvinylpyrrolidone (PES-PVP) polymeric matrix with hollow mesoporous silica (HMS), amino-functionalized hollow mesoporous silica (NH2-HMS) and amino-functionalized mesoporous silica (NH2-meso-silica). The composite membranes show a significant increase in proton conductivity and a decrease in the activation energy for proton diffusion in comparison with the phosphoric acid (H3PO4, PA) doped PES-PVP membrane. And the composite membrane with NH2-HMS shows the best performance under the conditions in this study, achieving the highest proton conductivity of 1.52 × 10-1 S cm-1 and highest peak power density of 480 mW cm-2 at 180 °C under anhydrous conditions, which is 92.7% higher than that of the PA doped PES-PVP membrane at identical conditions. Such enhancement results from the facilitated proton transportation in the ordered mesoporous channels via the hydrogen bond between the -NH2 groups and H3PO4. The high water retention capability of silica materials with a hollow structure also contributes to the decrease of the activation of proton diffusion. Consequently, the results show promising potential of the NH2-HMS based PES-PVP composite membrane for the elevated temperature proton exchange membrane fuel cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A NOx reduction efficiency higher than 95% with NH3 slip less than 30 ppm is desirable for heavy-duty diesel (HDD) engines using selective catalytic reduction (SCR) systems to meet the US EPA 2010 NOx standard and the 2014-2018 fuel consumption regulation. The SCR performance needs to be improved through experimental and modeling studies. In this research, a high fidelity global kinetic 1-dimensional 2-site SCR model with mass transfer, heat transfer and global reaction mechanisms was developed for a Cu-zeolite catalyst. The model simulates the SCR performance for the engine exhaust conditions with NH3 maldistribution and aging effects, and the details are presented. SCR experimental data were collected for the model development, calibration and validation from a reactor at Oak Ridge National Laboratory (ORNL) and an engine experimental setup at Michigan Technological University (MTU) with a Cummins 2010 ISB engine. The model was calibrated separately to the reactor and engine data. The experimental setup, test procedures including a surrogate HD-FTP cycle developed for transient studies and the model calibration process are described. Differences in the model parameters were determined between the calibrations developed from the reactor and the engine data. It was determined that the SCR inlet NH3 maldistribution is one of the reasons causing the differences. The model calibrated to the engine data served as a basis for developing a reduced order SCR estimator model. The effect of the SCR inlet NO2/NOx ratio on the SCR performance was studied through simulations using the surrogate HD-FTP cycle. The cumulative outlet NOx and the overall NOx conversion efficiency of the cycle are highest with a NO2/NOx ratio of 0.5. The outlet NH3 is lowest for the NO2/NOx ratio greater than 0.6. A combined engine experimental and simulation study was performed to quantify the NH3 maldistribution at the SCR inlet and its effects on the SCR performance and kinetics. The uniformity index (UI) of the SCR inlet NH3 and NH3/NOx ratio (ANR) was determined to be below 0.8 for the production system. The UI was improved to 0.9 after installation of a swirl mixer into the SCR inlet cone. A multi-channel model was developed to simulate the maldistribution effects. The results showed that reducing the UI of the inlet ANR from 1.0 to 0.7 caused a 5-10% decrease in NOx reduction efficiency and 10-20 ppm increase in the NH3 slip. The simulations of the steady-state engine data with the multi-channel model showed that the NH3 maldistribution is a factor causing the differences in the calibrations developed from the engine and the reactor data. The Reactor experiments were performed at ORNL using a Spaci-IR technique to study the thermal aging effects. The test results showed that the thermal aging (at 800°C for 16 hours) caused a 30% reduction in the NH3 stored on the catalyst under NH3 saturation conditions and different axial concentration profiles under SCR reaction conditions. The kinetics analysis showed that the thermal aging caused a reduction in total NH3 storage capacity (94.6 compared to 138 gmol/m3), different NH3 adsorption/desorption properties and a decrease in activation energy and the pre-exponential factor for NH3 oxidation, standard and fast SCR reactions. Both reduction in the storage capability and the change in kinetics of the major reactions contributed to the change in the axial storage and concentration profiles observed from the experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated DOC and CPF aftertreatment system. The effects of SME biodiesel blends were investigated in this study in order to determine the PM oxidation kinetics associated with active regeneration, and to determine the effect of biodiesel on them. The experimental data from this study will also be used to calibrate the MTU-1D CPF model. Accurately predicting the PM mass retained in the CPF and the oxidation characteristics will provide the basis for computation in the ECU that will minimize the fuel penalty associated with active regeneration. An active regeneration test procedure was developed based on previous experimentation at MTU. During each experiment, the PM mass in the CPF is determined by weighing the filter at various phases. In addition, DOC and CPF pressure drop, particle size distribution, gaseous emissions, temperature, and PM concentration data are collected and recorded throughout each experiment. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also used. The PM oxidation characteristics at different test conditions were studied in order to determine the effects of biodiesel on PM oxidation during active regeneration. A PM reaction rate calculation method was developed to determine the global activation energy and the corresponding pre-exponential factor for all test fuels. The changing sum of the total flow resistance of the wall, cake, and channels was also determined as part of the data analysis process in order to check on the integrity of the data and to correct input data to be consistent with the expected trends of the resistance based on the engine conditions used in the test procedure. It was determined that increasing the percent biodiesel content in the test fuel tends to increase the PM reaction rate and the regeneration efficiency of fuel dosing, i.e., at a constant CPF inlet temperature, B20 test fuel resulted in the highest PM reaction rate and regeneration efficiency of fuel dosing. Increasing the CPF inlet temperature also increases PM reaction rate and regeneration efficiency of fuel dosing. Performing active regeneration with B20 as opposed to ULSD allows for a lower CPF temperature to be used to reach the same level of regeneration efficiency, or it allows for a shorter regeneration time at a constant CPF temperature, resulting in decreased fuel consumption for the engine during active regeneration in either scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Release of uranium from Na-autunite, an artificial mineral created as a result of polyphosphate injection in the subsurface at the DOE Hanford Site, takes place during slow dissolution of the mineral structure. Stability information of the uranyl-phosphate phases is limited to conditions involving pH, temperature, and a few aqueous organic materials. The carbonate ion, which creates very strong complexes with uranium, is the predominant ion in the groundwater composition. The polyphosphate technology with the formation of autunite was identified as the most feasible remediation strategy to sequester uranium in contaminated groundwater and soil in situ. The objectives of the experimental work were (i) to quantify the effect of bicarbonate on the stability of synthetic sodium meta-autunite created as a result of uranium stabilization through polyphosphate injection, (ii) calculate the kinetic rate law parameters of the uranium release from Na-autunite during dissolution, and (iii) to compare the process parameters with those obtained for natural calcium meta-autunite. Experiments were conducted using SPTF apparatus, which consists of syringe pumps for controlling flow rate, Teflon reactors and a heating/cooling system. 0.25 grams of synthetic Na-autunite was placed in the reactor and buffer solutions with varying bicarbonate concentrations (0.0005 to 0.003 M) at different pH (6 - 11) were pumped through the reactors. Experiments were conducted at four different temperatures in the range of 5 - 60oC. It was concluded that the rate of release of uranium from synthetic Na-autunite is directly correlated to the bicarbonate concentration. The rate of release of uranium increased from 1.90 x 10-12 at pH 6 to 2.64 x 10-10 (mol m-2 s-1) at pH 11 at 23oC over the bicarbonate concentration range tested. The activation energy values were invariant with the change in the bicarbonate concentration; however, pH is shown to influence the activation energy values. Uranyl hydroxides and uranyl carbonates complexes helped accelerate the dissolution of autunite mineral.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A family of silica supported, magnetite nanoparticle catalysts was synthesized and investigated for continuous flow acetic acid ketonization as a model pyrolysis bio-oil upgrading reaction. Physicochemical properties of Fe3O4/SiO2 catalysts were characterized by HRTEM, XAS, XPS, DRIFTS, TGA and porosimetry. Acid site densities were inversely proportional to Fe3O4 particle size, although acid strength and Lewis character were size invariant, and correlated with the specific activity for vapor phase acetic ketonization to acetone. A constant activation energy (~110 kJ.mol-1), turnover frequency (~13 h-1) and selectivity to acetone of 60 % were observed for ketonization across the catalyst series, implicating Fe3O4 as the principal active component of Red Mud waste.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single stage and two-stage sodium sulfite cooking were carried out on either spruce, pine or pure pine heartwood chips to investigate the influence of several process parameters on the initial phase of such a cook down to about 60 % pulp yield. The cooking experiments were carried out in the laboratory with either a lab-prepared or a mill-prepared cooking acid and the temperature and time were varied. The influences of dissolved organic and inorganic components in the cooking liquor on the final pulp composition and on the extent of side reactions were investigated. Kinetic equations were developed and the activation energies for delignification and carbohydrate dissolution were calculated using the Arrhenius equation. A better understanding of the delignification mechanisms during bisulfite and acid sulfite cooking was obtained by analyzing the lignin carbohydrate complexes (LCC) present in the pulp when different cooking conditions were used. It was found that using a mill-prepared cooking acid beneficial effect with respect to side reactions, extractives removal and higher stability in pH during the cook were observed compared to a lab-prepared cooking acid. However, no significant difference in degrees of delignification or carbohydrate degradation was seen.  The cellulose yield was not affected in the initial phase of the cook however; temperature had an influence on the rates of both delignification and hemicellulose removal. It was also found that the  corresponding activation energies increased in the order:  xylan, glucomannan, lignin and cellulose. The cooking temperature could thus be used to control the cook to a given carbohydrate composition in the final pulp. Lignin condensation reactions were observed during acid sulfite cooking, especially at higher temperatures. The LCC studies indicated the existence of covalent bonds between lignin and hemicellulose components with respect to xylan and glucomannan. LCC in native wood showed the presence of phenyl glycosides, ϒ-esters and α-ethers; whereas the α-ethers  were affected during sulfite pulping. The existence of covalent bonds between lignin and wood polysaccharides might be the rate-limiting factor in sulfite pulping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, for the first time, a cobalt carbonate hydroxide (Co(CO3 )0.5 (OH)⋅0.11 H2 O) nanowire array on Ti mesh (CHNA/Ti) was applied to drive the dehydrogenation of alkaline NaBH4 solution for on-demand hydrogen production. Compared with other nanostructured Co-based catalyst systems, CHNA/Ti can be activated more quickly and separated easily from fuel solutions. This self-supported cobalt salt nanowire array catalyst works as an efficient and robust 3D catalyst for the hydrolysis reaction of NaBH4 with a hydrogen generation rate of 4000 mL min(-1)  gCo (-1) and a low apparent activation energy of 39.78 kJ mol(-1) and offers an attractive system for on-demand hydrogen generation.