994 resultados para ZNO NANOWIRES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monodisperse array and nanowires Of Y2O3:Eu3+ phosphor were synthesized using anodic aluminum oxide (AAO) template by sol-gel method. Scanning electron microscope (SEM) images indicated that Y2O3:Eu3+ nanowires are parallelly arranged, all of which are in uniform diameter of about 50 nm. The high-magnification SEM image showed that each nanowire is composed of a lot of agglutinating particles. The patterns of selected-area electron diffraction confirmed that Y2O3:EU3+ nanowires mainly consist of polycrystalline materials. Excitation and emission spectra Of Y2O3:E U3+/AAO composite films were measured. The characteristic red emission peak of EU3+ ion attributed to D-5(0)-->F-7(2) transition in Y2O3:EU3+/AAO nanowires broadened its halfwidth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter, P-cyclodextrin (P-CD) was employed as stabilizer in the synthesis of gold nanoparticles. Gold nanoparticles were synthesized by the reduction of HAuCl4 by NaBH4 in the presence of P-CD. Varying the ratio of P-Cl) to HAuCl4, isolated gold nanoparticles could be assembled into nanowires. The nanoparticles and nanowires were characterized by transmission electron microscopy, UV/visible spectroscopy, infrared spectroscopy and X-ray photoelectron spectroscopy. The decreased relative intensity of skeletal and ring vibration in FT-IR spectra and the negative shift of the Au4f(7/2) binding energy in XPS spectra confirmed that beta-CD was chemisorped on An nanoparticles via hydroxyl group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO and ZnO: Zn powder phosphors were prepared by the polyol-method followed by annealing in air and reducing gas, respectively. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectra (XPS), electron paramagnetic resonance (EPR), and photoluminescence (PL) and cathodoluminescence ( CL) spectra, respectively. The results indicate that all samples are in agreement with the hexagonal structure of the ZnO phase and the particle sizes are in the range of 1-2 mu m. The PL and CL spectra of ZnO powders annealed at 950 degrees C in air consist of a weak ultraviolet emission band ( similar to 390 nm) and a broad emission band centered at about 527 nm, exhibiting yellow emission color to the naked eyes. When the sample was reduced at the temperatures from 500 to 1050 degrees C, the yellow emission decreased gradually and disappeared completely at 800 degrees C, whereas the ultraviolet emission band became the strongest. Above this temperature, the green emission ( similar to 500 nm) appeared and increased with increasing of reducing temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many efforts have been made in fabricating three-dimensional (3D) ordered zinc oxide (ZnO) nanostructures due to their growing applications in separations, sensors, catalysis, bioscience, and photonics. Here, we developed a new synthetic route to 3D ZnO-based hollow microspheres by a facile solution-based method through a water-soluble biopolymer (sodium alginate) assisted assembly from ZnO nanorods. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectroscopy. Raman and photoluminescence spectra of the ZnO-based hollow microspheres were obtained at room temperature to investigate their optical properties. The hollow microspheres exhibit exciting emission features with a wide band covering nearly all the visible region. The calculated CIE (Commission Internationale d'Eclairage) coordinates are 0.24 and 0.31, which fall at the edge of the white region (the 1931 CIE diagram). A possible growth mechanism of the 3D ZnO superstructures based on typical biopolymer-crystal interactions in aqueous solution is tentatively proposed, which might be really interesting because of the participation of the biopolymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and convenient method for preparation of cobalt hexacyanoferrate (CoHCF) nanowires by electrodeposition was reported. Multiwall carbon nanotubes (MWNTs) were used as templates to fabricate CoHCF nanowires. MWNTs could affect the size of CoHCF nanoparticles and made them grow on the sidewalls of carbon nanotubes during the process of electrodeposition. Thus CoHCF nanowires could be obtained by this method. Field-emission scanning electron microscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize these nanowires. These results showed the CoHCF nanowires could be easily and successfully obtained and it gave a novel approach to prepare inorganic nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have developed a one-pot, morphology controlled epitaxial growth method to synthesize novel cactus-like ZnO in solution. Utilizing zinc acetate and hexamethylenetetramine as the precursors, ZnO nanorods synthesized in the first step remained in the solution, without any separation, served directly as the matrix for the epitaxial growth in the second step. Control experiments revealed that a proper mass of precursors added in the second step was crucial to form cactus-like ZnO. The as-synthesized ZnO was single crystalline and possessed three photoluminescence emissions centered at 390, 425 and 490 run. Finally, a possible mechanism for the epitaxial growth ZnO was proposed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-color LLP phenomenon was observed in Mn2+-doped ZnO-B2O3-SiO2 glassceramics after the irradiation of a UV lamp at room temperature. Transparent ZnO-B2O3-SiO2 glass emitted reddish LLP while opaque glass-ceramics prepared by the glass sample after heat treatment emitted yellowish or greenish LLP. The change of the phosphorescence is due to the alteration of co-ordination state of Mn2+. The phosphorescence of the samples was seen in the dark with naked eyes even 12 h after the irradiation with a UV lamp (lambda(max) = 254 nm) for 30 min. Based on the approximative t(-1) decay law of the phosphorescence, we suggest that the LLP is attributed to the thermally assisted electron-hole recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

通过高温固相法首次合成并报道了兰紫色ZnO Al2O3 SiO2长余辉陶瓷,系统地研究了其发光和缺陷性质。在强度0.6mW·cm-2,主峰254nm的UVP紫外灯下激发15min,然后关闭激发源,样品发射兰紫色长余辉。撤去激发源以后5s,余辉初始强度为230mcd·m-2,色坐标为(0.1292,0.0984)。暗视场中,8h以后余辉仍然肉眼可辨。样品的紫外可见发射和不同时间的余辉发射光谱显示:荧光发射位于390nm,来源于基质的自致发光;而余辉有两个发射峰,主峰位于390nm,肩峰位于520nm。这表明样品中存在两种余辉发射中心。由余辉衰减曲线可以看出,这两种余辉发光都由一个快过程和一个慢过程组成。其中,慢过程决定了材料的长余辉时间。从时间依赖的余辉强度倒数曲线可以看出,余辉强度与时间成反比,这表明余辉发光的机理为电子空穴复合过程。热释光谱显示:样品分别在92和250℃附近出现两个宽的热释峰,说明材料中至少存在两种具有不同陷阱深度的电子或空穴缺陷中心。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

量子尺寸氧化锌是重要的氧化物半导体材料之一 ,文中简单介绍了它的溶胶法制备及粒子生长和聚集过程 ,着重阐述了其光学性质研究现状和光致发光机理 ,并展望了未来的发展方向。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long lasting phosphorescence (LLP) phenomenon in Mn2+-doped ceramic based on ZnO-Al2O3-SiO2 (ZASM) is observed. After irradiation by a UVP standard mercury lamp peaking at 254 nm with a power of 0.6 mW/cm(2) for 15 min, the ceramic sample emits a bright green light peaking at 519 nm, which can be seen in the dark even 15 h after the removal of UVP standard mercury lamp by the naked eyes whose limit of light perception is 0.32 mcd/m(2). The initial afterglow intensity reaches about 1900 mcd/m(2), and the color coordinate (X, Y) is (0.2280, 0.5767) at about 10 s after stopping irradiation. The thermoluminescence (TL) spectra show that there are at least three kinds of trap centers with different trap levels while electron spin resonance (ESR) spectra indicate that there are electron- and hole-trapping centers induced after irradiation by a UVP standard mercury lamp. Based on these measurements, the LLP is considered to be due to the recombination of electrons and holes at trapping centers with different levels, which are firstly thermally released back to Mn2+ and then give rise to the bright green LLP at room temperature.