1000 resultados para YAlO3 crystal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Covering a nano-patterned titanium dioxide photonic crystal (PC) within a well-oriented film of dye-doped liquid crystal (LC), a distributed feedback laser is constructed whereby the emission characteristics can be manipulated in-situ using an electric field. This hybrid organic-inorganic structure permits simultaneous selectivity of both the beam pattern and laser wavelength by electrical addressing of the LC director. In addition, laser emission is obtained both in the plane and normal to the PC. Along with experimental data, a theoretical model is presented that is based upon an approximate calculation of the band structure of this birefringent, tuneable laser device. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the demonstration of an optically activated shutter based upon a short-pitch chiral nematic liquid crystal (LC) device sandwiched between crossed polarizers. This LC is comprised of photo-active chiral dopants. In the trans-state, the LC appears dark between crossed polarizers due to the very short pitch. As the pitch is extended through exposure to ultraviolet light, the device becomes transmissive reaching a maximum for a particular value of the pitch. As a result, it is possible to switch between the light and dark states by subjecting the device to visible light so as to cause a cis-trans photo-isomerisation. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tunable liquid crystal (LC) lens designed for a holographic projection system is demonstrated. By using a single patterned electrode LC lens, a solid lens and an encoded Fresnel lens on the LCoS panel, we can maintain the image size of the holographic projector with different wavelengths (λ:674nm, 532nm and 445nm) . The zoom ratio of the holographic projection system depends on the lens power of the solid lens and the tunable lens power of the LC lens. The optical zoom function can help to solve the image size mismatching problem of the holographic projection system. © 2013 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present printable laser devices formed by dispersing dye-doped chiral nematic liquid crystals in solution-processible polymers. Unlike current technology, this allows lasers to be formed on a wide variety of surfaces, e.g. paper, plastic, metal. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the design, fabrication, transmission and nearfield characterization of a novel parabolic tapered 1D photonic crystal cavity in silicon. The design allows repeatable device fabrication, high quality factor and small modal volume. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the design, fabrication, transmission and nearfield characterization of a novel parabolic tapered 1D photonic crystal cavity in silicon. The design allows repeatable device fabrication, high quality factor and small modal volume. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the design, fabrication, transmission and nearfield characterization of a novel parabolic tapered 1D photonic crystal cavity in silicon. The design allows repeatable device fabrication, high quality factor and small modal volume. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the design, fabrication, transmission spectrum measurement, and near-field characterization of a parabolic tapered one-dimensional photonic crystal cavity in silicon. The results shows a relatively high quality factor (∼43 000), together with a small modal volume of ∼ 1. 1 (λ/n) 3. Moreover, the design allows repeatable device fabrication, as evident by the similar characteristics obtained for several tens of devices that were fabricated and tested. These demonstrated 1D PhC cavities may be used as a building block in integrated photonic circuits for optical on-chip interconnects and sensing applications. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel method of using experimentally observed optical phenomena to reverse-engineer a model of the carbon nanofiber-addressed liquid crystal microlens array (C-MLA) using Zemax. It presents the first images of the optical profile for the C-MLA along the optic axis. The first working optical models of the C-MLA have been developed by matching the simulation results to the experimental results. This approach bypasses the need to know the exact carbon nanofiber-liquid crystal interaction and can be easily adapted to other systems where the nature of an optical device is unknown. Results show that the C-MLA behaves like a simple lensing system at 0.060-0.276 V/μm. In this lensing mode the C-MLA is successfully modeled as a reflective convex lens array intersecting with a flat reflective plane. The C-MLA at these field strengths exhibits characteristics of mostly spherical or low order aspheric arrays, with some aspects of high power aspherics. It also exhibits properties associated with varying lens apertures and strengths, which concur with previously theorized models based on E-field patterns. This work uniquely provides evidence demonstrating an apparent "rippling" of the liquid crystal texture at low field strengths, which were successfully reproduced using rippled Gaussian-like lens profiles. © 2014 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the design, fabrication, transmission and nearfield characterization of a novel parabolic tapered 1D photonic crystal cavity in silicon. The design allows repeatable device fabrication, high quality factor and small modal volume. © OSA 2012.