1000 resultados para YAP crystal
Resumo:
The quartz crystal resonator has been traditionally employed in studying surface-confined physisorbed films and particles by measuring dissipation and frequency shifts. However, theoretical interpretation of the experimental observations is often challenged due to limited understanding of physical interaction mechanisms at the interfaces involved. Here we model a physisorbed interaction between particles and gold electrode surface of a quartz crystal and demonstrate how the nonlinear modulation of the electric response of the crystal due to the nonlinear interaction forces may be used to study the dynamics of the particles. In particular, we show that the graphs of the deviation in the third Fourier harmonic response versus oscillation amplitude provide important information about the onset, progress and nature of sliding of the particles. The graphs also present a signature of the surface-particle interaction and could be used to estimate the interaction energy profile. Interestingly, the insights gained from the model help to explain some of the experimental observations with physisorbed streptavidin-coated polystyrene microbeads on quartz resonators. © 2012 Elsevier B.V. All rights reserved.
Resumo:
An orthorhombic DyMnO3 single crystal has been studied in magnetic fields up to 14 T and between 3 K and room temperature. The field dependent ordering temperature of Dy moments is deduced. The paramagnetic Curie Weiss behavior is related mainly to the Dy3+sublattice whereas the Mn sublattice contribution plays a secondary role. DC magnetization measurements show marked anisotropic features, related to the anisotropic structure of a cubic system stretched along a body diagonal, with a magnetic easy axis parallel to the crystallographic b axis. A temperature and field dependent spin flop transition is observed below 9 K, when relatively weak magnetocrystalline anisotropy is overcome by magnetic fields up to 1.6 T. © 2013 Elsevier B.V.
Resumo:
A free space optical wireless communication system with 3 degree angular coverage and 1.25 GHz modulation bandwidth is reported, in which relatively narrow laser beam of a simultaneous high power, high modulation speed and ultra high modulation efficiency directly modulated two-electrode tapered laser diode is steered using a nematic phase-only Liquid-Crystal On Silicon Spatial Light Modulator (LCOS SLM) by displaying reconfigurable 256 phase level gratings. © 1983-2012 IEEE.
Resumo:
The effects of growth temperature and V/III ratio on the morphology and crystallographic phases of InP nanowires that are grown by metal organic chemical vapour deposition have been studied. We show that higher growth temperatures or higher V/III ratios promote the formation of wurtzite nanowires while zinc-blende nanowires are favourableat lower growth temperatures and lower V/III ratios. A schematic map of distribution of zinc-blende and wurtzite structures has been developed in the range of growth temperatures (400-510 °C) and V/III ratios (44 to 700) investigated in this study. © 2010 IOP Publishing Ltd.
Resumo:
Covering a nano-patterned titanium dioxide photonic crystal (PC) within a well-oriented film of dye-doped liquid crystal (LC), a distributed feedback laser is constructed whereby the emission characteristics can be manipulated in-situ using an electric field. This hybrid organic-inorganic structure permits simultaneous selectivity of both the beam pattern and laser wavelength by electrical addressing of the LC director. In addition, laser emission is obtained both in the plane and normal to the PC. Along with experimental data, a theoretical model is presented that is based upon an approximate calculation of the band structure of this birefringent, tuneable laser device. © 2013 AIP Publishing LLC.
Resumo:
We report the demonstration of an optically activated shutter based upon a short-pitch chiral nematic liquid crystal (LC) device sandwiched between crossed polarizers. This LC is comprised of photo-active chiral dopants. In the trans-state, the LC appears dark between crossed polarizers due to the very short pitch. As the pitch is extended through exposure to ultraviolet light, the device becomes transmissive reaching a maximum for a particular value of the pitch. As a result, it is possible to switch between the light and dark states by subjecting the device to visible light so as to cause a cis-trans photo-isomerisation. © 2013 AIP Publishing LLC.
Resumo:
We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.
Resumo:
The tunable liquid crystal (LC) lens designed for a holographic projection system is demonstrated. By using a single patterned electrode LC lens, a solid lens and an encoded Fresnel lens on the LCoS panel, we can maintain the image size of the holographic projector with different wavelengths (λ:674nm, 532nm and 445nm) . The zoom ratio of the holographic projection system depends on the lens power of the solid lens and the tunable lens power of the LC lens. The optical zoom function can help to solve the image size mismatching problem of the holographic projection system. © 2013 SPIE.
Resumo:
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and microdevices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either 'microhard' (impenetrable to dislocations) or 'microfree' (an infinite dislocation sink). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present printable laser devices formed by dispersing dye-doped chiral nematic liquid crystals in solution-processible polymers. Unlike current technology, this allows lasers to be formed on a wide variety of surfaces, e.g. paper, plastic, metal. © OSA 2012.