985 resultados para Wheat Grain Cooking
Resumo:
Although it is well known that sandstone porosity and permeability are controlled by a range of parameters such as grain size and sorting, amount, type, and location of diagenetic cements, extent and type of compaction, and the generation of intergranular and intragranular secondary porosity, it is less constrained how these controlling parameters link up in rock volumes (within and between beds) and how they spatially interact to determine porosity and permeability. To address these unknowns, this study examined Triassic fluvial sandstone outcrops from the UK using field logging, probe permeametry of 200 points, and sampling at 100 points on a gridded rock surface. These field observations were supplemented by laser particle-size analysis, thin-section point-count analysis of primary and diagenetic mineralogy, quantitiative XRD mineral analysis, and SEM/EDAX analysis of all 100 samples. These data were analyzed using global regression, variography, kriging, conditional simulation, and geographically weighted regression to examine the spatial relationships between porosity and permeability and their potential controls. The results of bivariate analysis (global regression) of the entire outcrop dataset indicate only a weak correlation between both permeability porosity and their diagenetic and depositional controls and provide very limited information on the role of primary textural structures such as grain size and sorting. Subdividing the dataset further by bedding unit revealed details of more local controls on porosity and permeability. An alternative geostatistical approach combined with a local modelling technique (geographically weighted regression; GWR) subsequently was used to examine the spatial variability of porosity and permeability and their controls. The use of GWR does not require prior knowledge of divisions between bedding units, but the results from GWR broadly concur with results of regression analysis by bedding unit and provide much greater clarity of how porosity and permeability and their controls vary laterally and vertically. The close relationship between depositional lithofacies in each bed, diagenesis, and permeability, porosity demonstrates that each influences the other, and in turn how understanding of reservoir properties is enhanced by integration of paleoenvironmental reconstruction, stratigraphy, mineralogy, and geostatistics.
Resumo:
Synopsis: Bonded-in rod timber joints off er several advantages over conventional types of joint, including high local force transfer, very stiff connections, and improved ?re and aesthetic properties since the connection is completely hidden in the insulating timber members. More recently, the use of ?bre reinforced polymer (FRP) as a connecting rod, alternative to steel rods, in bonded-in rod connections for timber structures has been investigated. However, the investigation into the behaviour of such joints is limited, in particular, connections involving basalt ?bre reinforced polymers (BFRP) bars - which is the primary focus of this research. This paper presents an experimental programme conducted to investigate the behaviour of bonded-in BFRP bars loaded parallel to the grain of glulam members. Tensile pull-out tests were conducted to examine the effect of bonded length and bond stress-slip on the structural capacity of the connection. An analytical design expression for predicting pull-out capacity is proposed and the results have been compared with some established design equations. It was found that pull-out load increased approximately linearly with the bonded length, up to maximum which occurred at a bonded length of 15 times the hole diameter, and did not increase beyond this bonded length. The most signi?cant failure modes were failure at the timber/adhesive interface followed by pullout of the BFRP rod. Increased bonded lengths resulted in higher bond slip values compared to lower equivalent bonded lengths. The proposed design model gave the best predictions of pull-out capacity compared with other existing models.
Resumo:
The frequency of bad harvests and price elasticity of demand are measured using new data on English grain yields 1268–1480 and 1750–1850 and a revised price series. The analysis shows that major harvest shortfalls were a significant component of most historical subsistence crises, as back-to-back shortfalls were of the worst famines. Although serious harvest shortfalls long remained an unavoidable fact of economic life, by c.1800 yields had become less variable and prices less harvest sensitive. By the eve of the Industrial Revolution, England had become effectively famine-free.
Resumo:
Nitrofuran antibiotics cannot be used in food production within the European Union because of their potential health risks to consumers. The recent discovery of their widespread use in global food industries and the finding of semicarbazide in baby food as a result of packaging contamination have focused attention on the toxicity and stability of these drugs and their metabolites. The stability of the nitrofuran marker residues 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidone (AMOZ), 1-aminohydantoin (AHD) and semicarbazide (SEM) were tested. Muscle and liver of nitrofuran treated pigs were cooked by frying, grilling, roasting and microwaving. Between 67 and 100% of the residues remained after cooking, demonstrating that these metabolites are largely resistant to conventional cooking techniques and will continue to pose a health risk. The concentration of metabolites in pig muscle and liver did not drop significantly during 8 months of storage at -20 degrees C. Metabolite stock and working standard solutions in methanol were also stable for 10 months at 4 degrees C. Only a 10 ng ml(-1) solution of SEM showed a small drop in concentration over this extended storage period.
Resumo:
Anthelmintic drugs are widely used for treatment of parasitic worms in livestock, but little is known about the stability of their residues in food under conventional cooking conditions. As part of the European Commissionfunded research project ProSafeBeef, cattle were medicated with commercially available anthelmintic preparations, comprising 11 active ingredients (corresponding to 21 marker residues). Incurred meat and liver were cooked by roasting (40 min at 190°C) or shallow frying (muscle 8-12 min, liver 14-19 min) in a domestic kitchen. Raw and cooked tissues and expressed juices were analysed using a novel multi-residue dispersive solid-phase extraction method (QuEChERS) coupled with ultra-performance liquid chromatography-tandem mass spectrometry. After correction for sample weight changes during cooking, no major losses were observed for residues of oxyclozanide, clorsulon, closantel, ivermectin, albendazole, mebendazole or fenbendazole. However, significant losses were observed for nitroxynil (78% in fried muscle, 96% in roast muscle), levamisole (11% in fried muscle, 42% in fried liver), rafoxanide (17% in fried muscle, 18% in roast muscle) and triclabendazole (23% in fried liver, 47% in roast muscle). Migration of residues from muscle into expressed cooking juices varied between drugs, constituting 0% to 17% (levamisole) of total residues remaining after cooking. With the exception of nitroxynil, residues of anthelmintic drugs were generally resistant to degradation during roasting and shallow frying. Conventional cooking cannot, therefore, be considered a safeguard against ingestion of residues of anthelmintic veterinary drugs in beef. © 2011 Taylor & Francis.
Resumo:
Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a +/- stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.
A review of recent developments in the speciation and location of arsenic and selenium in rice grain
Resumo:
Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach.
Resumo:
• Inorganic arsenic (As(i) ) in rice (Oryza sativa) grains is a possible threat to human health, with risk being strongly linked to total dietary rice consumption and consumed rice As(i) content. This study aimed to identify the range and stability of genetic variation in grain arsenic (As) in rice. • Six field trials were conducted (one each in Bangladesh and China, two in Arkansas, USA over 2 yr, and two in Texas, USA comparing flooded and nonflood treatments) on a large number of common rice cultivars (c. 300) representing genetic diversity among international rice cultivars. • Within each field there was a 3-34 fold range in grain As concentration which varied between rice subpopulations. Importantly, As(i) correlated strongly with total As among a subset of 40 cultivars harvested in Bangladesh and China. • Genetic variation at all field sites was a large determining factor for grain As concentration, indicating that cultivars low in grain As could be developed through breeding. The temperate japonicas exhibited lower grain As compared with other subpopulations. Effects for year, location and flooding management were also statistically significant, suggesting that breeding strategies must take into account environmental factors.