991 resultados para Variable regions
Resumo:
The decline of bees has raised concerns regarding their conservation and the maintenance of ecosystem services they provide to bee-pollinated wild flowers and crops. Although the Mediterranean region is a hotspot for bee species richness, their status remains poorly studied. There is an urgent need for cost-effective, reliable, and unbiased sampling methods that give good bee species richness estimates. This study aims: (a) to assess bee species richness in two common Mediterranean habitat types: semi-natural scrub (phrygana) and managed olive groves; (b) to compare species richness in those systems to that of other biogeographic regions, and (c) to assess whether six different sampling methods (pan traps, variable and standardized transect walks, observation plots and trap nests), previously tested in other European biogeographic regions, are suitable in Mediterranean communities. Eight study sites, four per habitat type, were selected on the island of Lesvos, Greece. The species richness observed was high compared to other habitat types worldwide for which comparable data exist. Pan traps collected the highest proportion of the total bee species richness across all methods at the scale of a study site. Variable and standardized transect walks detected the highest total richness over all eight study sites. Trap nests and observation plots detected only a limited fraction of the bee species richness. To assess the total bee species richness in bee diversity hotspots, such as the studied habitats, we suggest a combination of transect walks conducted by trained bee collectors and pan trap sampling
Resumo:
The time at which the signal of climate change emerges from the noise of natural climate variability (Time of Emergence, ToE) is a key variable for climate predictions and risk assessments. Here we present a methodology for estimating ToE for individual climate models, and use it to make maps of ToE for surface air temperature (SAT) based on the CMIP3 global climate models. Consistent with previous studies we show that the median ToE occurs several decades sooner in low latitudes, particularly in boreal summer, than in mid-latitudes. We also show that the median ToE in the Arctic occurs sooner in boreal winter than in boreal summer. A key new aspect of our study is that we quantify the uncertainty in ToE that arises not only from inter-model differences in the magnitude of the climate change signal, but also from large differences in the simulation of natural climate variability. The uncertainty in ToE is at least 30 years in the regions examined, and as much as 60 years in some regions. Alternative emissions scenarios lead to changes in both the median ToE (by a decade or more) and its uncertainty. The SRES B1 scenario is associated with a very large uncertainty in ToE in some regions. Our findings have important implications for climate modelling and climate policy which we discuss.
Resumo:
Modelling spatial covariance is an essential part of all geostatistical methods. Traditionally, parametric semivariogram models are fit from available data. More recently, it has been suggested to use nonparametric correlograms obtained from spatially complete data fields. Here, both estimation techniques are compared. Nonparametric correlograms are shown to have a substantial negative bias. Nonetheless, when combined with the sample variance of the spatial field under consideration, they yield an estimate of the semivariogram that is unbiased for small lag distances. This justifies the use of this estimation technique in geostatistical applications. Various formulations of geostatistical combination (Kriging) methods are used here for the construction of hourly precipitation grids for Switzerland based on data from a sparse realtime network of raingauges and from a spatially complete radar composite. Two variants of Ordinary Kriging (OK) are used to interpolate the sparse gauge observations. In both OK variants, the radar data are only used to determine the semivariogram model. One variant relies on a traditional parametric semivariogram estimate, whereas the other variant uses the nonparametric correlogram. The variants are tested for three cases and the impact of the semivariogram model on the Kriging prediction is illustrated. For the three test cases, the method using nonparametric correlograms performs equally well or better than the traditional method, and at the same time offers great practical advantages. Furthermore, two variants of Kriging with external drift (KED) are tested, both of which use the radar data to estimate nonparametric correlograms, and as the external drift variable. The first KED variant has been used previously for geostatistical radar-raingauge merging in Catalonia (Spain). The second variant is newly proposed here and is an extension of the first. Both variants are evaluated for the three test cases as well as an extended evaluation period. It is found that both methods yield merged fields of better quality than the original radar field or fields obtained by OK of gauge data. The newly suggested KED formulation is shown to be beneficial, in particular in mountainous regions where the quality of the Swiss radar composite is comparatively low. An analysis of the Kriging variances shows that none of the methods tested here provides a satisfactory uncertainty estimate. A suitable variable transformation is expected to improve this.
Resumo:
We determine the properties of the core-periphery model with three regions and compare our results with those of the standard 2-region model. The conditions for the stability of dispersion and concentration are established. As in the 2-region model, dispersion and concentration can be simultaneously stable. We show that the 3-region (2-region) model favours the concentration (dispersion) of economic activity. Furthermore, we provide some results for the n-region model. We show that the stability of concentration of the 2-region model implies that of any model with an even number of regions.
Resumo:
The relevance of regional policy for less favoured regions (LFRs) reveals itself when policy-makers must reconcile competitiveness with social cohesion through the adaptation of competition or innovation policies. The vast literature in this area generally builds on an overarching concept of ‘social capital’ as the necessary relational infrastructure for collective action diversification and policy integration, in a context much influenced by a dynamic of industrial change and a necessary balance between the creation and diffusion of ‘knowledge’ through learning. This relational infrastructure or ‘social capital’ is centred on people’s willingness to cooperate and ‘envision’ futures as a result of “social organization, such as networks, norms and trust that facilitate action and cooperation for mutual benefit” (Putnam, 1993: 35). Advocates of this interpretation of ‘social capital’ have adopted the ‘new growth’ thinking behind ‘systems of innovation’ and ‘competence building’, arguing that networks have the potential to make both public administration and markets more effective as well as ‘learning’ trajectories more inclusive of the development of society as a whole. This essay aims to better understand the role of ‘social capital’ in the production and reproduction of uneven regional development patterns, and to critically assess the limits of a ‘systems concept’ and an institution-centred approach to comparative studies of regional innovation. These aims are discussed in light of the following two assertions: i) learning behaviour, from an economic point of view, has its determinants, and ii) the positive economic outcomes of ‘social capital’ cannot be taken as a given. It is suggested that an agent-centred approach to comparative research best addresses the ‘learning’ determinants and the consequences of social networks on regional development patterns. A brief discussion of the current debate on innovation surveys has been provided to illustrate this point.
Resumo:
This paper uses long-term regional construction data to investigate whether increases infrastructure investment in the English regions leads to subsequent rises in housebuilding and new commercial property, using time series modeling. Both physical (roads and harbours) and social infrastructure (education and health) impacts are investigated across nine regions in England. Significant effects for physical infrastructure are found across most regions and, also, some evidence of a social infrastructure effect. The results are not consistent across regions, which may be due to geographical differences and to network and diversionary effects. However, the results do suggest that infrastructure does have some impact but follows differential lag structures. These results provide a test of the hypothesis of the economic benefits of infrastructure investment in an approach that has not been used before.
Resumo:
While style analysis has been studied extensively in equity markets, applications of this valuable tool for measuring and benchmarking performance and risk in a real estate context are still relatively new. Most previous real estate studies on this topic have identified three investment categories (rather than styles): sectors, administrative regions and economic regions. However, the low explanatory power reveals the need to extend this analysis to other investment styles. We identify four main real estate investment styles and apply a multivariate model to randomly generated portfolios to test the significance of each style in explaining portfolio returns. Results show that significant alpha performance is significantly reduced when we account for the new investment styles, with small vs. big properties being the dominant one. Secondly, we find that the probability of obtaining alpha performance is dependent upon the actual exposure of funds to style factors. Finally we obtain that both alpha and systematic risk levels are linked to the actual characteristics of portfolios. Our overall results suggest that it would be beneficial for real estate fund managers to use these style factors to set benchmarks and to analyze portfolio returns.
Resumo:
A number of studies have investigated the benefits of sector versus regional diversification within a real estate portfolio without explicitly quantify the relative benefits of one against the other. This paper corrects this omission by adopting the approach of Heston and Rouwenhorst (1994) and Beckers, Connor and Curds (1996) on a sample of 187 property data points using annual data over the period 1981-1995. The general conclusion of which is the sector diversification explains on average 22% of the variability of property returns compared with 8% for administratively defined regions. A result in line with previous work. Implying that sector diversification should be the first level of analysis in constructing and managing the real estate portfolio. However, unlike previous work functionally defined regions provide less of an explanation of regional diversification than administrative regions. Which may be down to the weak definition of economic regions employed in this study.
Resumo:
World-wide structural genomics initiatives are rapidly accumulating structures for which limited functional information is available. Additionally, state-of-the art structural prediction programs are now capable of generating at least low resolution structural models of target proteins. Accurate detection and classification of functional sites within both solved and modelled protein structures therefore represents an important challenge. We present a fully automatic site detection method, FuncSite, that uses neural network classifiers to predict the location and type of functionally important sites in protein structures. The method is designed primarily to require only backbone residue positions without the need for specific side-chain atoms to be present. In order to highlight effective site detection in low resolution structural models FuncSite was used to screen model proteins generated using mGenTHREADER on a set of newly released structures. We found effective metal site detection even for moderate quality protein models illustrating the robustness of the method.