999 resultados para VASODILATOR FUNCTION
Resumo:
The cell is continuously subjected to various forms of external and intrinsic proteindamaging stresses, including hyperthermia, pathophysiological states, as well as cell differentiation and proliferation. Proteindamaging stresses result in denaturation and improper folding of proteins, leading to the formation of toxic aggregates that are detrimental for various pathological conditions, including Alzheimer’s and Huntington’s diseases. In order to maintain protein homeostasis, cells have developed different cytoprotective mechanisms, one of which is the evolutionary well-conserved heat shock response. The heat shock response results in the expression of heat shock proteins (Hsps), which act as molecular chaperones that bind to misfolded proteins, facilitate their refolding and prevent the formation of protein aggregates. Stress-induced expression of Hsps is mediated by a family of transcription factors, the heat shock factors, HSFs. Of the four HSFs found in vertebrates, HSF1-4, HSF1 is the major stress-responsive factor that is required for the induction of the heat shock response. HSF2 cannot alone induce Hsps, but modulates the heat shock response by forming heterotrimers with HSF1. HSFs are not only involved in the heat shock response, but they have also been found to have a function in development, neurodegenerative disorders, cancer, and longevity. Therefore, insight into how HSFs are regulated is important for the understanding of both normal physiological and disease processes. The activity of HSF1 is mainly regulated by intricate post-translational modifications, whereas the activity of HSF2 is concentrationdependent. However, there is only limited understanding of how the abundance of HSF2 is regulated. This study describes two different means of how HSF2 levels are regulated. In the first study it was shown that microRNA miR-18, a member of the miR-17~92 cluster, directly regulates Hsf2 mRNA stability and thus protein levels. HSF2 has earlier been shown to play a profound role in the regulation of male germ cell maturation during the spermatogenesis. The effect on miR-18 on HSF2 was examined in vivo by transfecting intact seminiferous tubules, and it was found that inhibition of miR-18 resulted in increased HSF2 levels and modified expression of the HSF2 targets Ssty2 and Speer4a. HSF2 has earlier been reported to modulate the heat shock response by forming heterotrimers with HSF1. In the second study, it was shown that HSF2 is cleared off the Hsp70 promoter and degraded by the ubiquitinproteasome pathway upon acute stress. By silencing components of the anaphase promoting complex/cyclosome (APC/C), including the co-activators Cdc20 and Cdh1, it was shown that APC/C mediates the heatinduced ubiquitylation of HSF2. Furthermore, down-regulation of Cdc20 was shown to alter the expression of heat shock-responsive genes. Next, we studied if APC/C-Cdc20, which controls cell cycle progression, also regulates HSF2 during the cell cycle. We found that both HSF2 mRNA and protein levels decreased during mitosis in several but not all human cell lines, indicating that HSF2 has a function in mitotic cells. Interestingly, although transcription is globally repressed during mitosis, mainly due to the displacement of RNA polymerase II and transcription factors, including HSF1, from the mitotic chromatin, HSF2 is capable of binding DNA during mitosis. Thus, during mitosis the heat shock response is impaired, leaving mitotic cells vulnerable to proteotoxic stress. However, in HSF2-deficient mitotic cells the Hsp70 promoter is accessible to both HSF1 and RNA polymerase II, allowing for stress-inducible Hsp expression to occur. As a consequence HSF2-deficient mitotic cells have a survival advantage upon acute heat stress. The results, presented in this thesis contribute to the understanding of the regulatory mechanisms of HSF2 and its function in the heat shock response in both interphase and mitotic cells.
Resumo:
This study was designed to evaluate the thyroid and pituitary hormone levels in post-weaning rats whose dams were fed a low-protein diet during suckling (21 days). The dams and pups were divided into 2 groups: a control group fed a diet containing 22% protein that supplies the necessary amount of protein for the rat and is the usual content of protein in most commercial rat chow, and a diet group fed a low-protein (8%) diet in which the protein was substituted by an isocaloric amount of starch. After weaning all dams and pups received the 22% protein diet. Two hours before sacrifice of pups aged 21, 30 and 60 days, a tracer dose (0.6 µCi) of 125I was injected (ip) into each animal. Blood and thyroid glands of pups were collected for the determination of serum T4, T3 and TSH and radioiodine uptake. Low protein diet caused a slight decrease in radioiodine uptake at 21 days, and a significant decrease in T3 levels (128 ± 14 vs 74 ± 9 ng/dl, P<0.05), while T4 levels did not change and TSH was increased slightly. At 30 days, T3 and TSH did not change while there was a significant increase in both T4 levels (4.8 ± 0.3 vs 6.1 ± 0.2 µg/dl, P<0.05) and in radioiodine uptake levels (0.34 ± 0.02 vs 0.50 ± 0.03%/mg thyroid, P<0.05). At 60 days serum T3, T4 and TSH levels were normal, but radioiodine uptake was still significantly increased (0.33 ± 0.02 vs 0.41 ± 0.03%/mg thyroid, P<0.05). Thus, it seems that protein malnutrition of the dams during suckling causes hypothyroidism in the pups at 21 days that has a compensatory mechanism increasing thyroid function after refeeding with a 22% protein diet. The radioiodine uptake still remained altered at 60 days, when all the hormonal serum levels returned to the normal values, suggesting a permanent change in the thyroid function
Resumo:
The objectives of the present study were 1) to compare results obtained by the traditional manual method of measuring heart rate (HR) and heart rate response (HRR) to the Valsalva maneuver, standing and deep breathing, with those obtained using a computerized data analysis system attached to a standard electrocardiograph machine; 2) to standardize the responses of healthy subjects to cardiovascular tests, and 3) to evaluate the response to these tests in a group of patients with diabetes mellitus (DM). In all subjects (97 healthy and 143 with DM) we evaluated HRR to deep breathing, HRR to standing, HRR to the Valsalva maneuver, and blood pressure response (BPR) to standing up and to a sustained handgrip. Since there was a strong positive correlation between the results obtained with the computerized method and the traditional method, we conclude that the new method can replace the traditional manual method for evaluating cardiovascular responses with the advantages of speed and objectivity. HRR and BPR of men and women did not differ. A correlation between age and HRR was observed for standing (r = -0.48, P<0.001) and deep breathing (r = -0.41, P<0.002). Abnormal BPR to standing was usually observed only in diabetic patients with definite and severe degrees of autonomic neuropathy.
Resumo:
We present the results obtained with a ureterovesical implant after ipsilateral ureteral obstruction in the rat, suitable for the study of renal function after deobstruction in these animals. Thirty-seven male Wistar rats weighing 260 to 300 g were submitted to distal right ureteral ligation and divided into 3 groups, A (N = 13, 1 week of obstruction), B (N = 14, 2 weeks of obstruction) and C (N = 10, 3 weeks of obstruction). The animals were then submitted to ureterovesical implantation on the right side and nephrectomy on the left side. During the 4-week follow-up period serum levels of urea and creatinine were measured on the 2nd, 7th, 14th, 21st and 28th day and compared with preoperative levels. The ureterovesical implantation included a psoas hitch procedure and the ureter was pulled into the bladder using a transvesical suture. During the first week of the postoperative period 8 animals died, 4/13 in group A (1 week of obstruction) and 4/14 in group B (2 weeks of obstruction). When compared to preoperative serum levels, urea and creatinine showed a significant increase (P<0.05) on the 2nd postoperative day in groups A and B, with a gradual return to lower levels. However, the values in group B animals were higher than those in group A at the end of the follow-up. In group C, 2/10 animals (after 3 weeks of obstruction) were sacrificed at the time of ureterovesical implantation due to infection of the obstructed kidneys. The remaining animals in this group were operated upon but all of them died during the first week of follow-up due to renal failure. This technique of ureterovesical implantation in the rat provides effective drainage of the upper urinary tract, permitting the development of an experimental model for the study of long-term renal function after a period of ureteral obstruction
Resumo:
Animal studies suggest that olive oil is capable of modulating functions of cells of the immune system in a manner similar to, albeit weaker than, fish oils. There is some evidence that the effects of olive oil on immune function in animal studies are due to oleic acid rather than to trace elements or antioxidants. Importantly, several studies have demonstrated effects of oleic acid-containing diets on in vivo immune responses. In contrast, consumption of a monounsaturated fatty acid (MUFA)-rich diet by humans does not appear to bring about a general suppression of immune cell functions. The effects of this diet in humans are limited to decreasing aspects of adhesion of peripheral blood mononuclear cells, although there are trends towards decreases in natural killer cell activity and proliferation. The lack of a clear effect of MUFA in humans may be attributable to the higher level of monounsaturated fat used in the animal studies, although it is ultimately of importance to examine the effects of intakes which are in no way extreme. The effects of MUFA on adhesion molecules are potentially important, since these molecules appear to have a role in the pathology of a number of diseases involving the immune system. This area clearly deserves further exploration
Resumo:
Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.
Resumo:
We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolated bronchus. The amino acid L-lysine (100 mM) failed to significantly alter the contractile potency of histamine in guinea-pig isolated trachea (P>0.05). In guinea-pig isolated trachea precontracted with histamine, both L-arginine and D-arginine produced a concentration-dependent relaxation which was not significantly altered by epithelium removal or by the presence of the nitric oxide synthase inhibitor, NG-nitro L-arginine methyl ester (L-NAME; 50 µM). Thus, at very high concentrations, arginine exhibit a non-competitive antagonism of histamine-induced contraction of isolated airway preparations that was independent of the generation of nitric oxide and was not dependent on charge. These observations confirm previous studies of cutaneous permeability responses and of contractile responses of guinea-pig isolated ileal smooth muscle. Taken together, the data suggest that high concentrations of arginine can exert an anti-histamine effect.
Resumo:
The participation of the kallikrein-kinin system, comprising the serine proteases kallikreins, the protein substrates kininogens and the effective peptides kinins, in some pathological processes like hypertension and cardiovascular diseases is still a matter of controversy. The use of different experimental set-ups in concert with the development of potent and specific inhibitors and antagonists for the system has highlighted its importance but the results still lack conclusivity. Over the last few years, transgenic and gene-targeting technologies associated with molecular biology tools have provided specific information about the elusive role of the kallikrein-kinin system in the control of blood pressure and electrolyte homeostasis. cDNA and genomic sequences for kinin receptors B2 and B1 from different species were isolated and shown to encode G-protein-coupled receptors and the structure and pharmacology of the receptors were characterized. Transgenic animals expressing an overactive kallikrein-kinin system were established to study the cardiovascular effects of these alterations and the results of these investigations further corroborate the importance of this system in the maintenance of normal blood pressure. Knockout animals for B2 and B1 receptors are available and their analysis also points to the role of these receptors in cardiovascular regulation and inflammatory processes. In this paper the most recent and relevant genetic animal models developed for the study of the kallikrein-kinin system are reviewed, and the advances they brought to the understanding of the biological role of this system are discussed.
Resumo:
In previous studies we have shown stimulation of renal acid excretion in the proximal tubules of rats with diabetes of short duration, with no important alterations in glomerular hemodynamics; on the other hand, in thyroparathyroidectomized rats (TPTX model), a significant decrease in renal acid excretion, glomerular filtration rate (GFR) and renal plasma flow (RPF) was detected. Since important changes in the parathyroid hormone-vitamin D-Ca axis are observed in the diabetic state, the present study was undertaken to investigate the renal repercussions of thyroparathyroidectomy in rats previously made diabetic by streptozotocin (45 mg/kg). Four to 6 days after the induction of diabetes (DM), a group of rats were thyroparathyroidectomized (DM + TPTX). Renal functional parameters were evaluated by measuring the inulin and sodium para-aminohippurate clearance on the tenth day. The decrease in the GFR and RPF observed in TPTX was not reversed by diabetes since the same alterations were observed in DM + TPTX. Net acid (NA) excretion was unchanged in DM (6.19 ± 0.54), decreased in TPTX (3.76 ± 0.25) and returned to normal levels in DM + TPTX (5.54 ± 0.72) when compared to the control group (6.34 ± 0.14 µmol min-1 kg-1). The results suggest that PTH plays an important vasodilator role regarding glomerular hemodynamics, since in its absence the impairment in GFR and RPF was not reversed by the diabetic state. However, with respect to acid excretion, the presence of diabetes was able to overcome the negative stimulus represented by TPTX.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric mucin-like 120-kDa glycoprotein on leukocyte surfaces that binds to P- and L-selectin and promotes cell adhesion in the inflammatory response. The extreme amino terminal extracellular domain of PSGL-1 is critical for these interactions, based on site-directed mutagenesis, blocking monoclonal antibodies, and biochemical analyses. The current hypothesis is that for high affinity interactions with P-selectin, PSGL-1 must contain O-glycans with a core-2 branched motif containing the sialyl Lewis x antigen (NeuAca2®3Galß1®4[Fuca1®3]GlcNAcß1®R). In addition, high affinity interactions require the co-expression of tyrosine sulfate on tyrosine residues near the critical O-glycan structure. This review addresses the biochemical evidence for this hypothesis and the evidence that PSGL-1 is an important in vivo ligand for cell adhesion.
Resumo:
Static lung volume (LV) measurements have a number of clinical and research applications; however, no previous studies have provided reference values for such tests using a healthy sample of the adult Brazilian population. With this as our main purpose, we prospectively evaluated 100 non-smoking subjects (50 males and 50 females), 20 to 80 years old, randomly selected from more than 8,000 individuals. Gender-specific linear prediction equations were developed by multiple regression analysis with total lung capacity (TLC), functional residual capacity (FRC), residual volume (RV), RV/TLC ratio and inspiratory capacity (IC) as dependent variables, and with age, height, weight, lean body mass and indexes of physical fitness as independent ones. Simpler demographic and anthropometric variables were as useful as more complex measurements in predicting LV values, independent of gender and age (R2 values ranging from 0.49 to 0.78, P<0.001). Interestingly, prediction equations from North American and European studies overestimated the LV at low volumes and underestimated them at high volumes (P<0.05). Our results, therefore, provide a more appropriate frame of reference to evaluate the normalcy of static lung volume values in Brazilian males and females aged 20 to 80 years.
Resumo:
The strength of the respiratory muscles can be evaluated from static measurements (maximal inspiratory and expiratory pressures, MIP and MEP) or inferred from dynamic maneuvers (maximal voluntary ventilation, MVV). Although these data could be suitable for a number of clinical and research applications, no previous studies have provided reference values for such tests using a healthy, randomly selected sample of the adult Brazilian population. With this main purpose, we prospectively evaluated 100 non-smoking subjects (50 males and 50 females), 20 to 80 years old, selected from more than 8,000 individuals. Gender-specific linear prediction equations for MIP, MEP and MVV were developed by multiple regression analysis: age and, secondarily, anthropometric measurements explained up to 56% of the variability of the dependent variables. The most cited previous studies using either Caucasian or non-Caucasian samples systematically underestimated the observed values of MIP (P<0.05). Interestingly, the self-reported level of regular physical activity and maximum aerobic power correlates strongly with both respiratory and peripheral muscular strength (knee extensor peak torque) (P<0.01). Our results, therefore, provide a new frame of reference to evaluate the normalcy of some useful indexes of respiratory muscle strength in Brazilian males and females aged 20 to 80.
Resumo:
Carbon monoxide diffusing capacity (DLCO) or transfer factor (TLCO) is a particularly useful test of the appropriateness of gas exchange across the lung alveolocapillary membrane. With the purpose of establishing predictive equations for DLCO using a non-smoking sample of the adult Brazilian population, we prospectively evaluated 100 subjects (50 males and 50 females aged 20 to 80 years), randomly selected from more than 8,000 individuals. Gender-specific linear prediction equations were developed by multiple regression analysis with single breath (SB) absolute and volume-corrected (VA) DLCO values as dependent variables. In the prediction equations, age (years) and height (cm) had opposite effects on DLCOSB (ml min-1 mmHg-1), independent of gender (-0.13 (age) + 0.32 (height) - 13.07 in males and -0.075 (age) + 0.18 (height) + 0.20 in females). On the other hand, height had a positive effect on DLCOSB but a negative one on DLCOSB/VA (P<0.01). We found that the predictive values from the most cited studies using predominantly Caucasian samples were significantly different from the actually measured values (P<0.05). Furthermore, oxygen uptake at maximal exercise (VO2max) correlated highly to DLCOSB (R = 0.71, P<0.001); this variable, however, did not maintain an independent role to explain the VO2max variability in the multiple regression analysis (P>0.05). Our results therefore provide an original frame of reference for either DLCOSB or DLCOSB/VA in Brazilian males and females aged 20 to 80 years, obtained from the standardized single-breath technique.
Resumo:
We report data showing that developed pressure (DPmax) may lead to opposite conclusion with respect to maximal developed circumferential wall stress (smax) when used to assess contractile function in left ventricle isovolumic preparations. Isovolumetric left ventricle preparations of rats with cardiac hypertrophy (H; N = 10) induced by isoproterenol administration showed higher DPmax (174 ± 14 mmHg) than control (C; N = 8) animals (155 ± 12 mmHg) or rats with regression (R; N = 8) of hypertrophy (144 ± 11 mmHg). In contrast, the estimated smax for C (145 ± 26 kdynes/cm2) and R (133 ± 17 kdynes/cm2) was higher than for H (110 ± 13 kdynes/cm2). According to Laplace's law, the opposite results of DPmax and smax may depend on the increased mass/volume left ventricle ratio of the hypertrophied hearts, which favored pressure generation. These results clearly show that DPmax should be used with caution to analyze systolic function.
Resumo:
Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.