985 resultados para VASCULAR ENDOTHELIUM
Resumo:
Root-knot nematode [RKN] (Meloidogyne incognita) can increase the severity of Verticillium (V dahliae) and Fusarium (F oxysporum f.sp. vasinfectum) wilt diseases in cotton (Gossypium hirsutum). This study was conducted to determine some of the physiological responses caused by nematode invasion that might decrease resistance to vascular wilt diseases. The effect of RKN was investigated on spore germination and protein, carbohydrate and peroxidase content in the xylem fluids extracted from nematode-infected plants. Two cotton cultivars were used with different levels of resistance to both of the wilt pathogens. Spore germination was greater in the xylem fluids from nematode-infected plants than from nematode-free plants. The effect on spore germination was greater in the Fusarium-resistant cultivar (51%). Analysis of these fluids showed a decrease in total protein and carbohydrate levels for both wilt-resistant cultivars, and an increase in peroxidase concentration. Fluids from nematode-free plants of the Verticillium-resistant cultivar contained 46% more peroxidase than the Fusarium-resistant cultivar. The results provide further evidence that the effect of RKN on vascular wilt resistance is systemic and not only local. Changes in metabolites in the xylem pass from the root to the stem, accelerating disease development.
Resumo:
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664-2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96 degrees C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.
Resumo:
Oxidized low-density lipoproteins (LDL) play a central role in atherogenesis and induce expression of the antioxidant stress protein heme oxygenase 1 (HO-1). In the present study we investigated induction of HO-1 and adaptive increases in reduced glutathione (GSH) in human aortic smooth muscle cells (SMC) in response to moderately oxidized LDL (moxLDL, 100 mu g protein/ml, 24 h), a species containing high levels of lipid hydroperoxides. Expression and activity of HO-1 and GSH levels were elevated to a greater extent by moxLDL than highly oxidized LDL but unaffected by native or acetylated LDL. Inhibitors of protein kinase C (PKC) or mitogen-activated protein kinases (MAPK) p38(MAPK) and MEK or c-jun-NH2-terminal kinase (JNK) significantly attenuated induction of HO-1. Phosphorylation of p38(MAPK), extracellular signal-regulated kinase (ERK1/2), or JNK and nuclear translocation of the transcription factor Nrf2 were enhanced following acute exposure of SMC to rnoxLDL (100 mu g proteiri/ml, 1-2 h). Pretreatment of SMC with the antioxidant vitamin C (100 mu M, 24 h) attenuated the induction of HO-1 by moxLDL. Native and oxidized LDL did not alter basal levels of intracellular ATP, mitochondrial dehydrogenase activity, or expression of the lectin-like oxidized LDL receptor (LOX-1) in SMC. These findings demonstrate for the first time that activation of PKC, p38(MAPK), JNK, ERK1/2, and Nrf2 by oxidized LDL in human SMC leads to HO-1 induction, constituting an adaptive response against oxidative injury that can be ameliorated by vitamin C. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
Abnormal vascular smooth muscle cell (VSMC) proliferation plays an important role in the pathogenesis of both atherosclerosis and restenosis. Recent studies suggest that high-dose salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in-vitro and in-vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAIDs) exert similar anti proliferative effects on VSMCs, and do so via a common mechanism of action, remains to be shown. In this study, we demonstrate that the NSAIDs aspirin, sodium salicylate, diclofenac, ibuprofen, indometacin and sulindac induce a dose-dependent inhibition of proliferation in rat A10 VSMCs in the absence of significant cytotoxicity. Flow cytometric analyses showed that exposure of A10 cells to diclofenac, indometacin, ibuprofen and sulindac, in the presence of the mitotic inhibitor, nocodazole, led to a significant G0/G1 arrest. In contrast, the salicylates failed to induce a significant G1 arrest since flow cytometry profiles were not significantly different from control cells. Cyclin A levels were elevated, and hyperphosphorylated p107 was present at significant levels, in salicylate-treated A10 cells, consistent with a post-G1/S block, whereas cyclin A levels were low, and hypophosphorylated p107 was the dominant form, in cells treated with other NSAIDs consistent with a G1 arrest. The ubiquitously expressed cyclin-dependent kinase (CDK) inhibitors, p21 and p27, were increased in all NSAID-treated cells. Our results suggest that diclofenac, indometacin, ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase, whereas the growth inhibitory effect of salicylates probably affects the late S and/or G2/M phases. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit in the treatment of certain vasculoproliferative disorders.
Resumo:
Abnormal vascular smooth muscle cell (VSMC) proliferation is known to play an important role in the pathogenesis of atherosclerosis, restenosis and instent stenosis. Recent studies suggest that salicylates, in addition to inhibiting cyclooxygenase activity, exert an antiproliferative effect on VSMC growth both in vitro and in vivo. However, whether all non-steroidal anti-inflammatory drugs (NSAID) exert similar antiproliferative effects on VSMCs, and do so via a common mechanism of action, remains unknown. In the present study, we demonstrated that the NSAIDs, aspirin, ibuprofen and sulindac induced a dose-dependent inhibition of proliferation in rat A10 VSMCs (IC50 = 1666 mumol/L, 937 mumol/L and 520 mumol/L, respectively). These drugs did not show significant cytotoxic effects as determined by LDH release assay, even at the highest concentrations tested (aspirin, 5000 mumol/L; ibuprofen, 2500 mumol/L; and sulindac, 1000 mumol/L). Flow cytometric analyses showed that a 48 h exposure of A10 VSMCs to ibuprofen (1000 mumol/L) and sulindac (750 mumol/L) led to a significant G1 arrest (from 68.7 +/- 2.0% of cells in G1 to 76.6 +/- 2.2% and 75.8 +/- 2.2%, respectively, p < 0.05). In contrast, aspirin (2500 mumol/L) failed to induce a significant G1 arrest (68.1 +/- 5.2%). Clearer evidence of a G1 block was obtained by treatment of cells with the mitotic inhibitor, nocodazole (40 ng/ml), for the final 24 h of the experiment. Under these conditions, aspirin still failed to induce a G1 arrest (from 25.9 +/- 10.9% of cells in G1 to 19.6 +/- 2.3%) whereas ibuprofen and sulindac led to a significant accumulation of cells in G1(51.8% +/- 17.2% and 54.1% +/- 10.6%, respectively, p < 0.05). These results indicate that ibuprofen and sulindac inhibit VSMC proliferation by arresting the cell cycle in the G1 phase whereas the effect of aspirin appears to be independent of any special phase of the cell cycle. Irrespective of mechanism, our results suggest that NSAIDs might be of benefit to the treatment of vascular proliferative disorders.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.
Resumo:
With increasing recognition of the pivotal role of vascular dysfunction in the progression of atherosclerosis, the vasculature has emerged as an important target for dietary therapies. Recent studies have indicated that chronic fatty acid manipulation alters vascular reactivity, when measured after an overnight fast. However, individuals spend a large proportion of the day in the postprandial (non-fasted) state. Several studies have shown that high fat meals can impair endothelial function within 3-4 h, a time period often associated with peak postprandial lipaemia. Although the impact of meal fatty acids on the magnitude and duration of the postprandial lipaemic response has been extensively studied, very little is known about their impact on vascular reactivity after a meal.