991 resultados para Unstable Periodic Point
Resumo:
Silicon carbide (SiC) is a material of great technological interest for engineering applications concerning hostile environments where silicon-based components cannot work (beyond 623 K). Single point diamond turning (SPDT) has remained a superior and viable method to harness process efficiency and freeform shapes on this harder material. However, it is extremely difficult to machine this ceramic consistently in the ductile regime due to sudden and rapid tool wear. It thus becomes non trivial to develop an accurate understanding of tool wear mechanism during SPDT of SiC in order to identify measures to suppress wear to minimize operational cost.
In this paper, molecular dynamics (MD) simulation has been deployed with a realistic analytical bond order potential (ABOP) formalism based potential energy function to understand tool wear mechanism during single point diamond turning of SiC. The most significant result was obtained using the radial distribution function which suggests graphitization of diamond tool during the machining process. This phenomenon occurs due to the abrasive processes between these two ultra hard materials. The abrasive action results in locally high temperature which compounds with the massive cutting forces leading to sp3–sp2 order–disorder transition of diamond tool. This represents the root cause of tool wear during SPDT operation of cubic SiC. Further testing led to the development of a novel method for quantitative assessment of the progression of diamond tool wear from MD simulations.
Resumo:
In this study, we describe a simple and efficient method for on-chip storage of reagents for point-of-care (POC) diagnostics. The method is based on gelification of all reagents required for on-chip PCR-based diagnostics as a ready-to-use product. The result reported here is a key step towards the development of a ready and easy to use fully integrated Lab-on-a-chip (LOC) system for fast, cost-effective and efficient POC diagnostics analysis.
Resumo:
We have characterized the pre-B cell colony stimulating activity (pre-B cell CSA) from LICR LON HMY2 conditioned medium (CM) by a variety of biochemical techniques. Pre-B cell CSA was found to be associated with a heat stable glycoprotein which has an isoelectric point of 8.3 and a mol. wt, as determined by polyacrylamide gel electrophoresis, of 28-32 kD. The relationship of this activity to previously described factors acting on cells of the B cell lineage is discussed.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency periodic pulsations contained within the active power flow from different wind farms. A primary concern is excitation of existing low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of the interconnected Northern and Southern power system networks. Recently grid code requirements on the Northern Ireland power system have been updated stipulating that wind farms connected after 2005 must be able to control the magnitude of oscillations in the range of 0.25 - 1.75 Hz to within 1% of the wind farm's registered output. In order to determine whether wind farm low-frequency oscillations have a negative effect (excite other modes) or possibly a positive impact (damping of existing modes) on the power system, the oscillations at the point of connection must be measured and characterised. Using time - frequency methods, research presented in this paper has been conducted to extract signal features from measured low-frequency active power pulsations produced by wind farms to determine the effective composition of possible oscillatory modes which may have a detrimental effect on system dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.
Resumo:
We introduce a method for measuring the full stress tensor in a crystal utilising the properties of individual point defects. By measuring the perturbation to the electronic states of three point defects with C 3 v symmetry in a cubic crystal, sufficient information is obtained to construct all six independent components of the symmetric stress tensor. We demonstrate the method using photoluminescence from nitrogen-vacancy colour centers in diamond. The method breaks the inverse relationship between spatial resolution and sensitivity that is inherent to existing bulk strain measurement techniques, and thus, offers a route to nanoscale strain mapping in diamond and other materials in which individual point defects can be interrogated.
Resumo:
The tendon of flexor pollicis longus angulates at the trapezio-metacarpal joint level. The degree of angulation varies with extent of radial/ulnar deviation (Rack and Ross [1984] J. Physiol. 351:99–110). We report a fibrous pulley at this level that helps stabilize the tendon and facilitates its action. The morphology of the pulley is described. We believe that it has an important role to play in the unique function of the tendon facilitating the movement of the thumb perpendicular to the plane of the thumbnail. Clin. Anat. 21:427–432, 2008. © 2008 Wiley-Liss, Inc
Resumo:
The properties of the combinatorial frequency generation and wave scattering by periodic stacks of nonlinear passive semiconductor layers are explored. It is demonstrated that the nonlinearity in passive weakly nonlinear semiconductor medium has the resistive nature associated with the dynamics of carriers. The features of the combinatorial frequency generation and the effects of the pump wave scattering and parameters of the constituent semiconductor layers on the efficiency of the frequency mixing are discussed and illustrated by the examples. © 2013 IEICE.
Resumo:
High-cadence, multiwavelength observations and simulations are employed for the analysis of solar photospheric magnetic bright points (MBPs) in the quiet Sun. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere (ROSA) imager and the Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope. Our analysis reveals that photospheric MBPs have an average transverse velocity of approximately 1 km s-1, whereas their chromospheric counterparts have a slightly higher average velocity of 1.4 km s-1. Additionally, chromospheric MBPs were found to be around 63 per cent larger than the equivalent photospheric MBPs. These velocity values were compared with the output of numerical simulations generated using the muram code. The simulated results were similar, but slightly elevated, when compared to the observed data. An average velocity of 1.3 km s-1 was found in the simulated G-band images and an average of 1.8 km s-1 seen in the velocity domain at a height of 500 km above the continuum formation layer. Delays in the change of velocities were also analysed. Average delays of ˜4 s between layers of the simulated data set were established and values of ˜29 s observed between G-band and Ca ii K ROSA observations. The delays in the simulations are likely to be the result of oblique granular shock waves, whereas those found in the observations are possibly the result of a semi-rigid flux tube.