1000 resultados para Transtorno disfórico pré-menstrual
Resumo:
Capillary electrophoresis has become a well-established and routine-based separation technique. It is based on the differences between charged analyte mobility in aqueous or organic electrolytes. Its major limitation is the sensitivity due to small sample injection volumes and the narrow diameter of the capillaries, especially when UV detection is used. There are a number of ways to increase the concentration sensitivity. This report shows some on-line preconcentration strategies to perform it in free solution capillary electrophoresis that are based on manipulation of the analyte electrophoretic velocity during the sample introduction (stacking, field amplification and transient isotachophoresis).
Resumo:
The present work purposes the preparation of a silica gel sorbent organically modified with 2-aminoethyl-3-aminobutylmethyldimethoxysilane (AAMDMS) and imprinted with Cu2+ ions by means surface imprinting technique and its use for selective on-line sorbent preconcentration of Cu2+ ions with further UV-VIS spectrophotometric determination by flow injection analysis. The Cu2+-imprinted silica gel, when compared with non imprinted silica gel and silica gel, showed from the binary mixture of Cu2+/Ni2+ relative selectivity coefficient (k') of 6.84 and 5.43 and 6.64 and 19.83 for the mixture Cu2+/Pb2+, thus demonstrating higher selectivity of Cu2+-imprinted silica gel towards Cu2+ ions. Under optimized condition, the on-line preconcentration method provided detection limit of 3.4 μg L-1 and linear range ranging from 30.0 up to 300.0 μg L-1 (r = 0.995). The accuracy of method was successfully assessed by analyzing different kind of spiked water samples with recovery values ranging from 92.2 up to 103.0%.
Resumo:
This work describes CE preconcentration strategies based on the effect of manipulation of the disperse/secondary velocity. Introduced by Terabe et al. in 1984, micellar electrokinetic chromatography is a powerful separation approach that increases the usage of electrokinetic phenomena for the separation of nonionic compounds. The main disadvantage of MEKC is the low concentration sensitivity associated with the limited optical path length for on-capillary photometric detection and the limited volume of sample solution that can be injected. This paper compiles on-line concentration strategies for neutral analytes by sample stacking and sweeping in micellar electrokinetic chromatography.
Resumo:
The occurrence of benzene, toluene, ethylbenzene, and xylenes (BTEX) in some public areas of Curitiba-PR, Brazil, was evaluated. Their concentrations were then related to the vegetation's density in each area. Average benzene concentrations varied from 3.9 to 6.1 μg m-3, with higher values occurring in poorly dense vegetation areas. For toluene, average concentrations ranged from 6.5 to 7.2 μg m-3. The effect of such pollutants was evaluated by means of a bio indicator, Tillandsia stricta. Variation in total chlorophyll content and in stomatic density were detected in some samples and may be related to the BTEX concentrations found in the studied areas.
Resumo:
The Letreiro do Quinto rock shelter is located in the rural area of the city of Pedro II, Piauí, Brazil. The sandstone walls of the shelter are covered with prehistoric rupestrian paintings, painted in patterns of yellow and light and dark red hues. The chemical-mineralogical characterization of the prehistoric pigments was made with energy dispersive spectroscopy, scanning electron microscopy, energy dispersive X-ray fluorescence and 57Fe transmission Mössbauer spectroscopy at 110 K. Results confirm the occurrence of hematite- and goethite-rich ochres and also that the pigment layers are indeed made of a mixture of clay minerals mixed with iron oxides.
Resumo:
This paper evaluates the adsorption capacity of zirconocene-based silica materials in the pre-concentration of antimicrobians (tetracycline, sulfamethoxazole and trimethoprim) in aqueous medium. These materials were prepared by grafting the zirconocene onto silicas pre-treated at different temperatures. The retention capacity of these materials was evaluated by off line SPE and HPLC-UV and the proposed methodology was validated in ultrapure, tap and river water. The recovery for tetracycline was 72% (in the solid phase A) and, for sulfamethoxazole and trimethoprim was 68 and 95% in the commercial C18, respectively. The target antimicrobians were not detected in the Arroio Dilúvio (Porto Alegre - RS).
Resumo:
The clay mineral montmorillonite-K10 (MT), treated under acidic medium and saturated with potassium ions (MTK), was employed in sorption and desorption studies aiming the preconcentration of Cr(III) and the speciation analysis of chromium. The sorption process of Cr(III) was close to 100%, suggesting that MTK was a good material for Cr(III) preconcentration, although, the maximum recovery in HNO3 solution was near 89%. On the other hand, Cr(VI) practically was not retained in MTK, suggesting this material as an appropriate mineral phase to be used in speciation analysis of chromium in aqueous medium.
Resumo:
Corals incorporate major and trace elements in their tissues and skeletons, acting as good proxies for contaminant inputs over time. This incorporation occurs by a variety of mechanisms and depends on the bioavailability of elements. Corals are very susceptible to metal contamination during sample collection. As such, pre-treatment procedures need to include a decontamination step. The high Na and Ca concentrations in the matrix make the determination of trace metals an analytical challenge. The present paper reviews all the information published on coral sample pretreatments, metal determinations in corals, and also discusses the use of coral to monitor metal contamination.
Resumo:
The effect of moisture content in the steam treatment and enzymatic hydrolysis of sugarcane bagasse was evaluated. Steam treatment was perfomed at 195-210 ºC for 4-8 min using cane bagasse with moisture contents in the range 16-100 wt% (dry basis). Increased moisture contents not only had a positive influence in recovery of main cane biomass components but also resulted in better substrates for enzymatic hydrolysis. As a result, drying is not required for optimal pretreatment and enzymatic hydrolysis of sugarcane bagasse, which can be processed into second generation ethanol immediately after crushing and hot water washing.
Resumo:
The present study proposes a method for cloud point preconcentration of copper ions at pH 2.0 based on complexes formed with [4,5-dimercapto-1,3-dithyol-2-thionate] and subsequent determination by flame atomic absorption spectrometry (FAAS). Under optimal analytical conditions, the method provided limits of detection of 0.84 and 0.45 µg L-1, by preconcentrating 12.0 and 24.0 mL of sample, respectively. The method was applied for copper determination in water samples, synthetic saliva, guarana powder, tea samples and soft drinks and the accuracy was assessed by analyzing the certified reference materials Dogfish Liver (DOLT-4) and Lobster Hepatopancreas (TORT-2).
Resumo:
The sugarcane industry has huge potential for biorefinery concept application, given its development in recent years. In this context, cane sugar straw has become an attractive raw material for biofuel production. This study aims to investigate the chemical composition of cane sugar straw from different regions of Brazil, and to optimize a hydrothermal pretreatment stage for cellulosic ethanol production. Results of chemical characterization of the cane sugar straw for the regions assessed indicated little influence of place on straw chemical composition. Hydrothermal pretreatment showed high efficiency in hemicellulose removal. Hydrothermal pretreatments operating with temperatures of 190 and 210 ºC presented satisfactory results, reaching values close to 100% hydrolysis.
Resumo:
Ultraviolet radiation corresponds to a fraction of electromagnetic radiation, covering wavelengths between 1 and 400 nm. Methods based on UV irradiation have become popular because it is possible to treat samples simply by applying energy, avoiding procedures that require the use of toxic substances, thus contributing to the development of Green Chemistry. This study aimed to assess the main applications of UV radiation reported in the literature and thoroughly described the construction of an alternative and low-cost photochemical reactor to be used for the pretreatment of samples in the laboratory. The use of this new photochemical reactor in the clean-up of milk samples for spectrofluorimetric measurements was also reported.
Resumo:
The aim of this work was to synthesize a polyurethane polymer matrix using polyols as a raw material to obtain a binder such as the hydroxyl terminated polybutadiene (HTPB) pre-polymer in energetic material formulation. The soybean-based polyol was the best starting raw material for producing a binder for solid fuel formulation in rocket motor applications. Characterization of the obtained soybean-based polyurethane binder was carried out by employing FT-IR analysis and thermo analytical techniques that showed similar HTPB binder thermo decomposition behaviors, confirming their potential for use as polymer matrix composites.
Resumo:
In this work, we report the Biginelli-type reaction between various aldehydes, acetophenones and urea systems in the presence of sulfonic acid functionalized silica (SBA-Pr-SO3H) under solvent-free conditions, which led to 4,6-diarylpyrimidin-2(1H)-ones derivatives. SBA-Pr-SO3H with a pore size of 6 nm was found to be an efficient heterogeneous solid acid catalyst for this reaction which led to high product yields, was environmentally benign with short reaction times and easy handling.
Resumo:
Sulfonic acid functionalized SBA-15 nanoporous material (SBA-Pr-SO3H) with a large pore size of 6 nm, a high surface area, high selectivity, and excellent chemical and thermal stability was applied as an efficient heterogeneous nanoporous acid catalyst in the reaction of isatin with pyrazolones under mild reaction conditions. A novel class of symmetrical spiro[indoline-3,4'-pyrano[2,3-c:6,5-c']dipyrazol]-2-one derivatives was successfully obtained in high yields. Comparison of these results with those reported in the literature shows that the current method is efficient, and results in better reaction times and yields of the desired products. Other advantages of this new method are its operational simplicity, easy work-up procedure, and the use of SBA-Pr-SO3H as a reusable and environmentally benign nanoreactor, such that the reaction proceeds easily in its nanopores. We also tested the antimicrobial activity of the prepared compounds using the disc diffusion method, and some of the synthesized compounds exhibited the best results against B. subtilis and S. aureus.