990 resultados para Thompson, Colin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metastasis, the passage of primary tumour cells throughout the body via the vascular system and their subsequent proliferation into secondary lesions in distant organs, represents a poor prognosis and therefore an understandably feared event for cancer patients. Despite considerable advances in cancer diagnosis and treatment, most deaths are the result of metastases resistant to conventional treatment [1]. Rather than being a random process, metastasis involves a series of organised steps leading to the growth of a secondary tumour. Malignant tumours stimulate the production of new vessels by the host, and this process is a prerequisite for the increase in size of a new tumour [2]. Angiogenesis, not only permits tumour expansion but also allows the entry of tumour cells into the circulation and is probably the most vital event for the metastatic process [3]. Metastasis and angiogenesis [4] have received much attention in recent years. A biological understanding of both phenomena seems to be an urgent priority towards the search for an effective prevention and treatment of tumour progression. Studies in vitro and in vivo have shown that one of the most important barriers to the passage of malignant cells is the basement membrane. The crossing of such barriers is a vital step in the formation of a metastasis [5].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major obstacle to 3-dimensional tissue engineering is incorporation of a functional vascular supply to support the expanding new tissue. This is overcome in an in vivo intrinsic vascularization model where an arteriovenous loop (AVL) is placed in a noncollapsible space protected by a polycarbonate chamber. Vascular development and hypoxia were examined from 3 days to 112 days by vascular casting, morphometric, and morphological techniques to understand the model's vascular growth and remodeling parameters for tissue engineering purposes. At 3 days a fibrin exudate surrounded the AVL, providing a scaffold to migrating inflammatory, endothelial, and mesenchymal cells. Capillaries formed between 3 and 7 days. Hypoxia and cell proliferation were maximal at 7 days, followed by a peak in percent vascular volume at 10 days (23.20±3.14% compared with 3.59±2.68% at 3 days, P<0.001). Maximal apoptosis was observed at 112 days. The protected space and spontaneous microcirculatory development in this model suggest it would be applicable for in vivo tissue engineering. A temporal window in a period of intense angiogenesis at 7 to 10 days is optimal for exogenous cell seeding and survival in the chamber, potentially enabling specific tissue outcomes to be achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane type 1 metalloprotease (MT1-MMP) is a transmembrane metalloprotease that plays a major role in the extracellular matrix remodeling, directly by degrading several of its components and indirectly by activating pro-MMP2. We investigated the effects of MT1-MMP overexpression on in vitro and in vivo properties of human breast adenocarcinoma MCF7 cells, which do not express MT1-MMP or MMP-2. MT1-MMP and MMP-2 cDNAs were either transfected alone or cotransfected. All clones overexpressing MT1-MMP 1) were able to activate endogenous or exogenous pro-MMP-2, 2) displayed an enhanced in vitro invasiveness through matrigel-coated filters independent of MMP-2 transfection, 3) induced the rapid development of highly vascularized tumors when injected subcutanously in nude mice, and 4) promoted blood vessels sprouting in the rat aortic ring assay. These effects were observed in all clones overexpressing MT1-MMP regardless of MMP-2 expression levels, suggesting that the production of MMP-2 by tumor cells themselves does not play a critical role in these events. The angiogenic phenotype of MT1-MMP-producing cells was associated with an up-regulation of VEGF expression. These results emphasize the importance of MT1-MMP during tumor angiogenesis and open new opportunities for the development of antiangiogenic strategies combining inhibitors of MT1-MMP and VEGF antagonists. - Sounni, N. E., Devy, L., Hajitou, A., Frankenne, F., Munaut, C., Gilles, C., Deroanne, C., Thompson, E. W., Foidart, J. M., Noel, A. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A tissue inhibitor of metalloproteinases-2 (TIMP-2)-independent mechanism for generating the first activational cleavage of pro-matrix metalloproteinase-2 (MMP-2) was identified in membrane type-1 MMP (MT1-MMP)-transfected MCF-7 cells and confirmed in TIMP-2-deficient fibroblasts. In contrast, the second MMP-2-activational step was found to be TIMP-2 dependent in both systems. MMP-2 hemopexin C-terminal domain was found to be critical for the first step processing, confirming a need for membrane tethering. We propose that the intermediate species of MMP-2 forms the well-established trimolecular complex (MT1-MMP/TIMP-2/MMP-2) for further TIMP-2-dependent autocatalytic cleavage to the fully active species. This alternate mechanism may supplement the traditional TIMP-2-mediated first step mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously reported that concanavalin A (ConA)-induced MMP-2 activation involves both transcriptional and non-transcriptional mechanisms. Here we examined the effects of calcium influx on MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. The calcium ionophore ionomycin caused a dose-dependent inhibition of ConA-induced MMP-2 activation, but had no effect on MT1-MMP mRNA levels. However, Western analysis revealed an accumulation of pro-MT1-MMP (63 kDa), indicating that ionomycin blocked the conversion of pro-MT1-MMP protein to the active 60 kDa form. This suggests that increased calcium levels inhibit the processing of MT1-MMP. This finding may help to elucidate the mechanism(s) which regulates MT1-MMP activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two in vitro and two in vivo assays for the study of human cancer invasion and metastasis are described. The assays include in vitro invasiveness through an artificial basement membrane (Matrigel®), invasiveness and metastasis in nude mice of subcutaneously injected LacZ-transduced human tumor cells, in vitro adherence to basement membrane components, and LacZ-transduced human cancer cells injected intravenously into nude mice. In studies of the processes involved in human cancer cell invasion and metastasis, these four assays were found to be complementary, and thus provide a set of test systems for preclinical screening of agents which interfere with these processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro invasion and in vivo metastasis assays were performed with a panel of MCF-7 cells transfected with isogenic constructs of mutated ras(H) genes. Both increased levels of ras(H) expression and ras(H) oncogene activation increased activity of derivative cell lines in in vitro invasion assays. In vivo formation of spontaneous metastases was assessed after intradermal inoculation of MCF-7 cells in the vicinity of the mammary fat pads of ovariectomized nude mice. No metastases were seen in the absence of estradiol treatment of the mice. With estradiol supplementation of the mice both the ras(H)-transfected and control transfected cell lines gave a higher incidence of metastases than parental MCF-7 cells. Prolonged treatment of mice with exogenous estradiol (60 days vs. 21 days) resulted in more frequent metastases to liver and lung at the end of the 90-day observation period. In contrast to activated ras(H)-gene enhancement of metastatic capacity of rodent fibroblast and epithelial cell lines, there was no correlation of ras(H) expression with in vivo metastatic capacity of a human mammary carcinoma cell line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MMP-2 (gelatinase A) has been associated with the invasive potential of many cancer cells both in vitro and in vivo. It is now becoming clear that the activation of this enzyme might be a key step in tumor invasion. This activation process has been shown to be a membrane-associated pathway inducible by various agents such as collagen type I, concanavalin A or TGF-β, but its physiological regulation is still largely unresolved. MT-MMP was recently discovered and described as a potential gelatinase-A activator. In the present study, we investigated the expression of MT-MMP (membrane-type metalloproteinase) in cervical cancer cells both in vitro and in vivo. Comparing several in vitro-transformed cervical cell lines, previously shown to display different invasive potentials, our results showed that the ability of cells to overexpress MT-MMP mRNA following ConA induction correlated with their ability to activate gelatinase A and with a highly invasive behavior. Moreover, using immunohistochemistry and in situ hybridization, we found a higher level of MT-MMP expression in invasive cervical carcinoma and lymphnode metastases compared to its expression in non-invasive CIN III lesions. Our in vivo observations also clearly demonstrated a cooperation between stromal and tumor cells for the production of MT-MMP. Taken together, our results clearly correlated high level MT-MMP expression with invasiveness, and thus suggested that MT-MMP might play a crucial role in cervical tumor invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human breast cancer (HBC), as with many carcinoma systems, most matrix metalloproteinases (MMPs) are largely expressed by the stromal cells, whereas the tumour cells are relatively silent in MMP expression. To determine the tissue source of the most relevant MMPs, we xenografted HBC cell lines and HBC tissues into the mammary fat pad (MFP) or bone of immunocompromised mice and measured the expression of human and mouse MMP-2, -9, -11, -13, membrane-type-1 MMP (MT1-MMP), MT2-MMP and MT3-MMP by species-specific real-time quantitative RT-PCR. Our data confirm a stromal origin for most tumour-associated MMPs and indicate marked and consistent upregulation of stromal (mouse) MMP-13 and MT1-MMP in all xenografts studied, irrespective of implantation in the MFP or bone environments. In addition, we show increased expression of both human MMP-13 and human MT1-MMP by the MDA-MB-231 tumour cells grown in the MFP compared to in vitro production. MMP protein and activity data confirm the upregulation of MMP mRNA production and indicate an increase in the activated MMP-2 species as a result of tumour implantation. These data directly demonstrate tumour induction of MMP production by stromal cells in both the MFP and bone environments. These xenografts are a valuable means for examining in vivo production of MMPs and suggest that MMP-13 and MT1-MMP will be relevant targets for inhibiting breast cancer progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression of neutrophil gelatinase-associated lipocalin (NGAL) has been shown to be upregulated in ovarian cancer cells. In this study, we report that the expression of immunoreactive NGAL (irNGAL) in ovarian tumors changes with disease grade and that this change is reflected in the concentration of NGAL in peripheral blood. A total of 59 ovarian tissues including normal, benign, borderline malignant and grades 1, 2 and 3 malignant were analyzed using immunohistochemistry. irNGAL was not present in normal ovaries and the NGAL expression was weak to moderate in benign tissues. Both borderline and grade 1 tumors displayed the highest amount of NGAL expression with moderate to strong staining, whereas in grade 2 and 3 tumors, the extent of staining was significantly less (p < 0.01) and staining intensity was weak to moderate. Staining in all cases was confined to the epithelium. NGAL expression was analyzed by ELISA in 62 serum specimens from normal and different grades of cancer patients. Compared to control samples, the NGAL concentration was 2 and 2.6-fold higher in the serum of patients with benign tumors and cancer patients with grade 1 tumors (p < 0.05) and that result was consistent with the expression of NGAL performed by Western blot. NGAL expression was evaluated by Western blot in an immortalized normal ovarian cell line (IOSE29) as well as ovarian cancer cell lines. Moderate to strong expression of NGAL was observed in epithelial ovarian cancer cell lines SKOV3 and OVCA433 while no expression of NGAL was evident in normal IOSE29 and mesenchyme-like OVHS1, PEO.36 and HEY cell lines. NGAL expression was downregulated in ovarian cancer cell lines undergoing epithelio-mesenchymal transition (EMT) induced by epidermal growth factor (EGF). Down-regulation of NGAL expression correlated with the upregulation of vimentin expression, enhanced cell dispersion and downregulation of E-cadherin expression, some of the hallmarks of EMT. EGF-induced EMT phenotypes were inhibited in the presence of AG1478, an inhibitor of EGF receptor tyrosine kinase activity. These data indicate that NGAL may be a good marker to monitor changes of benign to premalignant and malignant ovarian tumors and that the molecule may be involved in the progression of epithelial ovarian malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection with erbB-2 (E) of Ha-ras (H) oncogene-transfected cells has been previously shown to cooperatively induce anchorage-independent growth of the MCF10A human mammary epithelial cell line in vitro, but not to induce nude mouse tumorigenicity. Here we show that oncogene-transformed MCF10A are able to halt in the lungs of nude mice, a sign of organ colonization potential. We have therefore studied the transformants for in vitro migratory and invasive properties known to correlate with the metastatic potential of human mammary carcinoma cells in nude mice. MCF10A transfected with Ha-ras, infected with a recombinant retroviral vector containing the human c-erB-2 proto-oncogene (MCF10A-HE cells), show a higher invasive index than either the single transfectant (MCF10A-H) or MCF10A-erB-2(MCF10A-E) cells in the Boyden chamber chemotaxis and chemoinvasion assays. The MCF10A-HE cells also adopted an invasive stellate growth pattern when plated or embedded in Matrigel, in contrast to the spherical colonies formed by the single transformants MCF10A-H, MCF10A-E, and the parental cells. Dot-blot analysis of gelatinase A and TIMP-2 mRNA levels revealed increasing gelatinase A mRNA levels (HE > E > H > MCF10A) and reduced TIMP-2 expression in both single and double transformants. Furthermore, MCF10A-HE cells show more MMP-2 activity than parental MCF10A cells or the single transformants. CD44 analysis revealed differential isoform banding for the MCF10A-HE cells compared to parental cells, MCF10A-H and MCF10A-E, accompanied by increased binding of hyaluronan by the double transformants. Our results indicate that erB-2 and Ha-ras co-expression can induce a more aggressive phenotype in vitro, representative of the malignancy of mammary carcinomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human ovarian carcinoma samples were orthotopically implanted into SCID mice to investigate the contribution of matrix metalloproteases (MMPs) to the spread of ovarian tumors. Mice were inoculated with patient tumor samples, and developed ovarian tumors over a 16-week period with metastasis occurring in some mice. Species-specific quantitative RT-PCR was used to identify the source of tumor-associated MMPs. Membrane-type (MT)1-MMP mRNA was significantly increased in high-grade tumors, tumors with evidence of serosal involvement, and tumors in which distant metastases were detected. The increase in MT1-MMP expression was predominantly from the human tumor cells, with a minor contribution from the mouse ovarian stroma. Neither human nor mouse MT2-MMP were correlated with tumor progression and MT3-MMP levels were negligible. While tumor cells did not produce significant amounts of MMP-2 or MMP-9, the presence of tumor was associated with increased levels of MMP-2 expression by mouse ovarian stroma. Stromal-derived MT1-MMP was greater in large tumors and was associated with stromal MMP-2 expression but neither was significantly linked with metastasis. These studies indicate that tumor-derived MT1-MMP, more so than other gelatinolytic MMPs, is strongly linked to aggressive tumor behavior. This orthotopic model of human ovarian carcinoma is appropriate for studying ovarian tumor progression, and will be valuable in the further investigation of the metastatic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current understanding of the regulation of breast cancer cell proliferation and invasiveness by hormones and growth factors is reviewed. It has been shown that polypeptide growth factors are involved in hormone-independent breast cancer, and are sometimes oestrogen-regulated in hormone-responsive models. Basement-membrane invasiveness, relating to the metastatic potential of these cells, is also stimulated by oestrogen in hormone-dependent models, elevated in hormone-independent models, and is growth factor sensitive. Further understanding of the differential effects of growth factors on breast cancer cell proliferation and invasiveness should facilitate better therapeutic exploitation of regulation at this level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is characterized by hormonal regulation. The current article reviews the role of estrogen and polypeptide growth factors in control of proliferation and basement membrane invasion of breast cancer cells in vitro. The role of antiestrogens to regulate proliferation, invasion, and growth factor secretion is further highlighted. Finally, the use of in vitro cultures of breast cancer cells to model steps in the malignant progression of the disease is emphasized. The availability of hormone dependent and independent breast cancer cell lines should allow screening for better antiestrogens, antimetastatic drugs, and antagonists of local action of growth factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm- Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.