1000 resultados para Temperatura de funcionamento
Resumo:
The present work investigates solid waste temperature behavior in different depths in two cells in the Rio Claro-SP city’s sanitary landfill. One of the cells is in operation with waste disposal beginning about one year ago. The other one is located in an closed area and contain waste disposed from five to seven years before. Measures were also made in an area that have no disposed waste in order to collect reference values. The data were obtained every fifteen days. The temperature results shows higher values in the operating cell, with maximum 38,1 °C in a depth of 4,0 m. In the closed cell the highest values were 36,3 °C in a depth of 8,5 m. The highest temperature values were obtained in the operating cell due to wider substract availability that indicates a more intense biological degradation activity. With three meters depth, the temperature results were 36,6 °C in the operating cell, 33,8 °C in the closed cell and 24,5 °C in the reference area. Therefore the temperature can be used as a biological activity indicator in sanitary landfills, supporting biogas studies
Resumo:
Ethanol, the main automotive biofuel, has its production based on the fermentation of sugars found in biological materials and on the distillation of the alcoholic media formed during the fermentative process. Stillage is the main residue from ethanol production, containing a high organic loading in addition to acidic and corrosive characteristics. Considering the available technologies to treat stillage, we highlight anaerobic digestion, which allows the reduction of the impacts associated to pollutants loading of this effluent and the generation of energy from the methane gas produced in the process. Based on the high treatment efficiency usually associated to the anaerobic process, this work aimed to assess whether anaerobic systems applied to the treatment of stillage are energetically self-sufficient. First we evaluated the energy recovery capacity in an anaerobic reactor applied to the treatment of stillage resulting from corn-to-ethanol processing. The results indicated the great influence that a correct selection of electrical equipment and their respective operating periods have on the net energy balance of the anaerobic treatment. The high energy consumption of the heater would not allow the system to achieve a positive net energy balance – the maximum energy recovery would reach only 0.68% of the consumption. However, the replacement of the mixture equipment would result in energy gains ranging from 8.5 to 967.9% of the consumption. In this work we also assessed the efficiency of methane yields for a few studies and the correlation between some parameters of the anaerobic process. With respect to the methane yield, we noted that mesophilic systems tend to be more advantageous than the thermophilic ones (efficiency of 76.45 ± 22.51% vs. 69.40 ± 30.36%). Considering the study... (Complete abstract click electronic access below)
Resumo:
This work research and analyses the formulations and concepts of heat and temperature presented in Physics textbooks. These issues are deemed important because students often have difficulties differentiating and understanding such concepts, which compromises their education. The goal is to show that well-established relationships between Physical quantities such as energy, pressure, heat and temperature, even in different theories of Classical and Quantum Physics are not enough to define either temperature or heat. It also presents simple experiments that complement the teaching and learning of these concepts
Resumo:
The anaerobic treatment of sewage is widely employed in Brazil and it is an appreciated way for the treatment of effluents, helping to reduce the environmental impact in rivers. The methane gas obtained from the process can be applied to improve the energetic efficiency of the system, reducing the amount of waste and the cost of the treatment process. This work presents the net energy balance of anaerobic reactors applied to the treatment of sewage. The analysis was performed considering full-scale and laboratory-scale treatment systems. In laboratory scale, the results from three kinds of systems were compared regarding the biological treatment of greywater. Two of them (UASB7 and UASB12) were anaerobic and the other one was a combined anaerobic-aerobic system (UASB7/SBR6). Greywater methanization (compared to theoretical maximum) was calculated considering 100% removal (g BOD/day), the literature percentage removal and the anionic surfactant presence in the effluentt. For each of these three cases, the efficiencies were, respectively, 16.9%, 43.6% and 51.3% in UASB7 reactor, 25.6%, 50.3% and 59.2% in UASB12 reactor and 30.6%, 61.2% and 71.9% in UASB7/SBR6 reactor. The energetic potential was found to be 4.66x10-4, 7.77x10-4 and 5.12x10-4 kWh/L for the UASB7, UASB12 and UASB7/SBR6 reactors, respectively. The pumping system, the aeration (in the anaerobic-aerobic system) and the temperature controlled heating system were considered to calculate the energetic consumption. However, the third one was not employed since tropical regions like Brazil do not need heating systems and also because of its high energetic consumption. The calculated net energy balance in the reactors was negative in the case of greywater, respectively -0.16, -0.28 and -0.18 kWh/L for the reactors UASB7, UASB12 and UASB7/SRB6. In full scale (ETE Jardim das Flores - Rio Claro, SP), the average energy... (Complete abstract click electronic access below)
Resumo:
Non-intrusive methods of diagnosis, such as spectral analysis of the radiation emitted by the system, have been used as a viable alternative for determining the temperature of combustion systems. Among them, the determination of temperature by natural emission spectroscopy has the advantage of requiring relatively simple experimental devices. Once Chemiluminescent species are formed directly in the excited state, the collection and recording of radiation emission spectrum is enough to determine the temperature (CARINHANA, 2008). In this study we used the process of making direct comparisons between the experimental spectra obtained in the laboratory from the plasma of alcohol, and the theoretical spectra plotted from a computer program developed at the IEAv. The objective was to establish a fast and reliable method to measure the rotational temperature of the radical C2*. The results showed that the temperature of the plasma, which in turn can be taken as the rotational temperature of the system, is proportional to the pressure. The temperature values ranged from ca. 2300 ~ 2500 K at a pressure of 19 mmHg to 3100 ~ 3500 K for the pressure of 46 mmHg. The temperature values are somewhat smaller when we consider the theoretical spectrum as a Lorentzian curve. The overlap of the spectra was better when using the profile curve, but still were not exactly superimposed. The solution to improve the overlap of the theoretical with the experimental spectra is the use of a curve that has the convolution of two profiles analyzed: Lorentzian and Gaussian. This curve is called the Voigt profile, which will also be implemented by programmers and studied in a next work
Resumo:
In a combustion process involving fossil fuels, there is the formation of species Chemiluminescent, especially CH*, C2* and OH*, whose spontaneous emission can be used as a diagnostic tool. In the present work, mapping and determination of the rotational temperature of the species CH* produced in flames on a burner fueled by Liquefied Petroleum Gas (LPG) was carried out. This study is part of a project involving the characterization of supersonic combustion in scramjets engines, whose study has been conducted in the hypersonic shock tunnel IEAv laboratories. The technique used was the natural emission spectroscopy, which has as main advantage of being non-intrusive. The rotational temperature determination was made using the Boltzmann method, whose principle is to relate the emission intensity of the species to the temperature by means of spectroscopic constants established.The temperature values were determined from the analysis of electronic bands AX and BX of the radical CH*. In order to confirm the results of flame temperatures obtained by the natural emission technique, was also used the technique of line reversal sodium. The results of both techniques showed that the temperature of the flames investigated is about 2500K a 2700K
Resumo:
The welding process in industrial piping is still the most effective way to ensure the durability and quality of the wide range of industrial process, although because of the high demand for energy and quality of the produced products, the piping has been constantly tested for high pressure applications and still high temperature. The welding method analyzed is the TIG (Tungsten Inert Gas) welding or GTAW (Gas-Shielded Tungsten Arc Welding), which ones have as principal feature the utilization of a not consumable tungsten electrode in the torch extremity , in this process is necessary a protective atmosphere of inert gas. The welding TIG advantage is the obtaining of a welded seam clean and with quality for not has slag after the welding. This work has as objective show the variability in the carbon steel piping welding parameters and by the tests in four proof bodies will be shown the influence of the variation of the welding methods in a welded seam. The tests will vary since the piece to be welded preparation, till penetrating liquid tests, welding macrography, welding x-ray and traction tests. Even been a clean and with quality welding is necessary a final inspection in the seam welded looking for defects almost inevitable resulted of the welded process, the obtained results have the objective of indicate and minimize the defects to ensure quality and durability of the welded seam
Resumo:
After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)
Resumo:
The deslignification with oxygen, also denominated pre-O2, consists in a whitening stage, which consists of accomplishing an oxidation of the lignin, and remove it with the alkali, providing a larger earnings in the bleaching of the pulp. The pre-O2 is a process already very established, where a significant part of the cellulose of whitened short fiber produced nowadays suffers deslignification for this method. The conditions of work of this stage contemplate directly in the results of the deslignification level, in the physical, optical and mechanics properties of the pulp, and consequently of the paper, because this is important to know their effects fully. The main variables related to the control of this process are respectively: pressure and oxygen load, alkaline load, consistence, time and temperature, being this last variable was the study focus in this work. The objective of the work was to analyze the effect of the variation of the temperature in the oxygen whitening along every bleaching process of the pulp, refine and in the optical, physics and mechanics properties of the paper. The development of the work was based in four temperature levels (90, 95, 100 and 105°C) combined to two whitening sequences (OD0(E+P)D1P and OAHTD0(E+P)D1P). The results obtained in the oxygen deslignification stage indicated that the elevation of the temperature contemplated in increases of the whiteness, deslignification efficiency and in the viscosity loss allied to the reduction of the selectivity of the process. In the remaining of the whitening, the sequence that included the acid hydrolysis presented values slightly inferior of whiteness, kappa number, viscosity and yield in relation to the other sequence when compared with the samples of same temperatures. Already the physical tests showed that the sequence with acid stage amplifies the values of capillary... (Complete abstract click electronic access below)
Resumo:
The purpose of this project is to verify whether anaerobic reactors applied to sewage treatment are energetically self-sufficient. This evaluation can be made by balancing the methane produced through the anaerobic transformation stages (hydrolysis, acidogenesis, acetogenesis and methanogenesis) and the reactor energy consumption requirements. The original project included methanogenic activity tests, which could not be performed due to setbacks in the installation of an analytical instrument. Scientific articles about bench- and full-scale anaerobic reactors were investigated instead. An average substrate-to-methane conversion efficiency of 58,2±18,6% was found for the bench-scale reactors and higher efficiencies (89,2%) were found for the cases which had higher Organic Loading Rates (OLRs) values. The average energy output was 0,013 kWh/Lsewage, value unable to meet the energy needs for the reactor operation, considering equipments normally used such as temperature controller. This balance can become positive if few hypotheses are made, for example (i) to eliminate the use of temperature controller (ii) to alter the operation pattern from continuous to intermittent. Based on energy balance assessment of eight bench-scale reactors, it was observed that the implementation of a system for biogas utilization is not energetically feasible. However, interesting results were found for a full-scale sewage treatment plant, ETE Ouro Verde – Foz do Iguaçu, PR, Brazil. Even though its substrate-tomethane conversion efficiency was about 10% only, the energy balance was quite positive, with energy consumption of 68 kWh/month and energy production of 660 kWh/month. This analysis leads us to conclude that energy recovery from full-scale sewage treatment plants should be practiced by other plants
Resumo:
The internal combustion engine is a heat engine widely used in the automotive industry. In order to better understand its behavior many models in the literature have been proposed in the last years. The 0-D thermodynamic model is a fairly simple tool but it is very useful to understand the phenomenon of combustion inside the chamber of internal combustion engines. In the first phase of this work, an extensive literature review was made in order to get information about this kind of analysis and, after this, apply them in a model able to calculate the instantaneous temperature and pressure in one zone of the combustion chamber of a diesel engine. Therefore some considerations were made with the aim of increasing the accuracy of the model in predicting the correct behavior of the engine, adding the combined effects of heat transfer, leakage and injection. In the second phase, the goal was to study the internal flow of a three-dimensional model of an internal combustion engine. In order to achieve this goal the software Solidworks was used to create the geometries of an engine and the suite of softwares Ansys was used to create the moving mesh (ICEM CFD and CFX-Pre) and to solve the CFD problem (Ansys CFX code). The model was able to perform the air flow simulation during the four-stroke cycle of an engine: admission, compression, expansion and exhaust. The results obtained from both models were suitable and they open a new range of possibilities for future researches on the field
Resumo:
This undergraduate thesis evaluates the effects of temperature variation of the air inside the CVT gearbox on the performance of a Continuously Variable Transmission (CVT). The CVT used in the tests was manufactured by Gaged Engineering (GX9 model) and is currently used in a Baja prototype. It’s a mechanically operated CVT, which the movement of the pulley plates varies according to the drive shaft rotation, shifting the belt along the diameter, and varying the transmission ratio. The purpose of this work is to analyze the change in the slip factor, coefficient that compares the variation between the actual transmission ratio and the ratio of geometric transmission, and its correlation with the power variation. A test bench was built and some tests were performed, indicating that was possible to achieve output power ratios of 1.75 [ℎ
Resumo:
This project aimed to analyze the feasibility of the methane yield associated to the anaerobic digestion of brewery residues, checking whether the energetic balance of the system is favorable. The methane yield efficiency was calculated for the parameters of two papers that treated solids with a particle-size <1mm. Theses solids are not degraded in conventional treatment systems. Calculations were based in the reactions of anaerobic degradation of the macromolecules that compose brewery residues, considering the theoretical production and the effective production of methane. The results were 50.44% and 52.86%. Regarding to the energy balance of the anaerobic treatment, we noted the high influence of the selection and operating regime of electrical equipment over the potential energy. The best situation, in which the energetic self-sufficiency was reached, was observed when using the mixer under an intermittent regime (1min/h), without employing the heating recirculator, for the maximum organic loading of 4.0 gVS/L.day (days 248-258). In this case, the system would generate an amount of energy equal to 0.0356 kWh/day, able to overcome the energy required by the equipment in about 6.5 times. Moreover, we also noted the interference of the application of different solid loadings in the reactors, once the application of the higher organic load generated 5 times more energy than the application of the smaller one
Resumo:
Desde o conhecimento da radiação e seus efeitos a necessidade de mensurá-la intriga os cientistas. Os detectores de radiação mais difundidos atualmente fazem o uso de cristais semicondutores. Porém, esses detectores tem uma temperatura ótima de funcionamento que acaba sendo ultrapassada, já que o processo gera calor. Por isso, o resfriamento acaba sendo uma necessidade. O desenvolvimento de detectores de radiação com cristal semicondutor que opere a temperatura ambiente é tema de muitos estudos, já que evitaria o processo de resfriamento, trabalhoso e de alto custo. No Centro de Tecnologia das Radiações (CTR) do Instituto de Pesquisas Energéticas e Nucleares (IPEN) o sal de Brometo de Tálio (TlBr) é estudado para esta finalidade. Até ser um cristal semicondutor este sal deve passar por vários processos, entre eles o de purificação e o de cristalização. A técnica utilizada para purificar este cristal é a de Refino zonal. Após ser purificado por esta técnica o sal estará apto a ser cristalizado e consequentemente integrar um equipamento de detecção de radiação. Portanto, esta monografia teve como objetivo realizar a análise da segregação das impurezas do sal de TlBr através da técnica de espectroscopia de massa em fonte de plasma induzido (ICP-MS) e espectroscopia de emissão atômica (ICP-AES). Determinando assim se o mesmo está apto a ser cristalizado e vir a compor um detector de radiação
Resumo:
Individuals of the species Turdus leucomelas are adapted to live in environments already modified by humans, thus obtaining reproductive success in their nesting in vegetation, as well as built their nests in human buildings. Nests found in buildings are often less camouflaged, making them more exposed to predators compared to nests built in vegetation; however the nests built buildings are common, indicating a possible advantage associated with these nests. By means of this idea if was assumed that a possible advantage to this construction in buildings is linked to a change in variation in the internal temperature of the nest during incubation and development of pups until they leave their nests. Accordingly, with the aid of iButtons and TidBits (temperature data loggers), the present study aimed to analyze the influence of the nesting site on how the temperature is kept, and how it changes in the microenvironment in which the nest is inserted, indicating potential benefits associated with that choice. In the samples found with the vegetation, temperature data showed a pattern of temperature of the microenvironment of the nests is not very stable, varying with ambient temperature, whereas in the samples found with the human constructions, the temperature data showed a pattern of temperature microenvironment nests more stable for a long time. When comparing the two environments which they settled nests, as well as the different times of day (daytime and nighttime), how the temperature was kept and pattern of change within the nest was significantly different (F=43.85, p<0.001), with higher and more constant internal temperatures in nests installed in construction, compared to vegetation. When observing periods of the day, it was found that in both environments the temperature inside the nest reached higher values and higher than the environment at night, coinciding with the rest of the female at night. Data may suggest changes in the...