983 resultados para Tamborine Mountain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The historical orogenesis and associated climatic changes of mountain areas have been suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In this study, we examined the detailed diversification history of Primula sect. Armerina, and used biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions concerning the evolution of the geographical and ecological distribution of the species in this section. RESULTS: We sequenced five chloroplast and one nuclear genes for species of Primula sect. Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major incongruences between the two trees occur among closely related species and may be explained by hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. fasciculata clades have significantly different climatic niche optima and rates of niche evolution, indicating niche evolution under climatic changes and further providing evidence for explaining their biogeographic patterns. CONCLUSION: Our results support the hypothesis that geologic and climatic events play important roles in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and following climatic changes most likely promoted both the inter- and intraspecific divergence of Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes influences biogeographic patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contact zones of closely related and ecologically similar species constitute rare opportunities to study the evolutionary consequences of past speciation processes. They represent natural laboratories in which strong competition could lead to the exclusion of one species, or the various species may switch into distinct ecological niches. Alternatively, if reproductive isolation has not yet been achieved, they may hybridize. We elucidate the degree of taxon integrity by comparing genetics and habitat use of three similar-sized congeneric viper species, Vipera ammodytes, Viperaaspis, and Viperaberus, of Nadiza Valley in western Slovenia. No hybridization was detected for either mitochondrial or nuclear genomes. Similarly, external intermediacy by a single prestudy viper (probably V.ammodytesxV. aspis) indicates that hybridization occasionally occurs, but should be very rare. Populations of the three related viperids are partially allopatric in Nadiza Valley, but they also coexist in a narrow contact zone in the montane grassland along the south-exposed slope of Mount Stol (1673m a.s.l.). Here, the three species that occupy areas in or near patches of rocky microhabitats (e.g. stone piles, slides, and walls) live in syntopy. However, fine-scale measurements of structural components show partial habitat segregation, in which V.berus becomes more dominant at elevations above 1400m and occupies mostly the mountain ridge and north-exposed slopes of Mount Stol, V.aspis occurs below 1300m and is the only species to inhabit stoneless patches of grass and bushes around 1000m and lower, and V.ammodytes occurs at all elevations up to 1500m, but is restricted to a rocky microhabitat. We suggest that a high degree of microstructure divergence, slightly different environmental niches, and a generally favourable habitat for all three viper species, keep the pressure for mis-mating and hybridization low, although mechanisms such as reduced hybrid inferiority and temporal mating segregation cannot yet be excluded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les auteurs décrivent deux nouvelles associations nitrophiles propres aux Pyrénées: le Rumici-Chenopodietum boni-henrici, communauté subalpine des reposoirs de troupeaux et d'autres endroits rudéraux semblables, et le Taraxaco (dissecti)-Poetum supinae, colonisant les sols constamment pietinés. Ces deux communautés correspondent au complex de végétation rudérale que BRAUN-BLANQUET (1948) avait réuni dans le Chenopodieto-Taraxacetum pyrenaici.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the wild, animals have developed survival strategies relying on their senses. The individual ability to identify threatening situations is crucial and leads to increase in the overall fitness of the species. Rodents, for example have developed in their nasal cavities specialized olfactory neurons implicated in the detection of volatile cues encoding for impending danger such as predator scents or alarm pheromones. In particular, the neurons of the Grueneberg ganglion (GG), an olfactory subsystem, are implicated in the detection of danger cues sharing a similar chemical signature, a heterocyclic sulfur- or nitrogen-containing motif. Here we used a "from the wild to the lab" approach to identify new molecules that are involuntarily emitted by predators and that initiate fear-related responses in the recipient animal, the putative prey. We collected urines from carnivores as sources of predator scents and first verified their impact on the blood pressure of the mice. With this approach, the urine of the mountain lion emerged as the most potent source of chemical stress. We then identified in this biological fluid, new volatile cues with characteristic GG-related fingerprints, in particular the methylated pyridine structures, 2,4-lutidine and its analogs. We finally verified their encoded danger quality and demonstrated their ability to mimic the effects of the predator urine on GG neurons, on mice blood pressure and in behavioral experiments. In summary, we were able to identify here, with the use of an integrative approach, new relevant molecules, the pyridine analogs, implicated in interspecies danger communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of the genus Barbadocladius Cranston & Krosch (Diptera: Chironomidae), previously reported from Chile to Bolivia, has extended northwards. Larvae, pupae and pupal exuviae of this genus have been found in the high mountain tropical streams of Peru to 9°22′56″, but are restricted to very high altitude streams (altitudes over 3,278 m asl) compared to the lower altitude streams (below 1,100 m asl) in which the genus is reported in Chile and Argentina. Based on morphological studies, both described species in the genus, Barbadocladius andinus Cranston & Krosch and Barbadocladius limay Cranston & Krosch, have been found in Peru as pupae or pupal exuviae. Morphological analysis of the larvae and pupae revealed no differences between the two described species from Patagonia and Peru, which are of similar size and with a similar armament of hooklets and spines in pupal tergites and sternites. However, molecular analysis of larvae and pupae revealed that in Peru, there are at least two different evolutionary lines, one distributed widely and another restricted to one site. Phylogenetic analysis (using cox1 mitochondrial sequences) of all available sequences of Barbadocladius shows that the Chilean and Argentinean material differs from that of Peru. Therefore, a total of four molecular segregates are identified, although morphologically, neither larvae nor the pupae may be differentiated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study shows how a new generation of terrestrial laser scanners can be used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The study area is an Alpine valley glacier, Haut Glacier d'Arolla, Switzerland. Here we use an ultra-long-range lidar RIEGL VZ-6000 scanner, having a laser specifically designed for measurement of snow- and ice-cover surfaces. We focus on two timescales: seasonal and daily. Our results show that a near-infrared scanning laser system can provide high-precision elevation change and ablation data from long ranges, and over relatively large sections of the glacier surface. We use it to quantify spatial variations in the patterns of surface melt at the seasonal scale, as controlled by both aspect and differential debris cover. At the daily scale, we quantify the effects of ogive-related differences in ice surface debris content on spatial patterns of ablation. Daily scale measurements point to possible hydraulic jacking of the glacier associated with short-term water pressure rises. This latter demonstration shows that this type of lidar may be used to address subglacial hydrologic questions, in addition to motion and ablation measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutral and selective processes c an drive repeated patterns of evolu tion in dif ferent groups of populationsexp eriencing similar ecol ogica l gradients. In this paper, we used a combinat ion of nucl ear and mitochondrialDNA markers, as well as geometric morphometrics, to investigate repeated patterns of morphological andgenetic divergence of E uropean minnows in two mountain ranges : the Pyrenees and the Al ps. Europeanminnows (Phoxinus phoxinus) are cyprinid fish i nha bitin g most freshwater bodies in Europe, including those indifferent mountain r anges that could act as major geographical barriers to gene flow. We explored patterns ofP. phoxinus phenotypic and genetic di versi fication along a gradi ent of alti tude common to the two mountainranges, and tested for isolation by distance (IBD), isolation by environment (IBE) and isolation by adaptation(IBA). The results indicated that populations from the Pyr enees a nd the Alps bel ong to two well differentiated,reciprocally monophyletic mt DNA lineages. Substantial genetic differentiation due to geographical isolationwithin and between populations from the Pyrenees and the Alps was also found using rapidly evolving AFLPsmarkers (isolation by distance or IBD), as well as morphological differences between mountain ranges. Als o,morphology varied strong ly with elevation and so did genetic differentiation to a lower extent. Despitemoderate evidence for IBE and IBA, and therefore of repeated evolution, substantial population heterogeneitywas found at the genetic level, suggesting that selection and population specific genetic drift act in concert toaffect genetic divergence.