989 resultados para TERNARY ORGANOSILICON BLOCKCOPOLYMER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many basic-helix-loop-helix-leucine zipper (b-HLH-LZ) proteins, including the Myc family and non-Myc family, bind a common DNA sequence CACGTG, yet have quite different biological actions. Myc binds this sequence as a heterodimer with Max in the activation of both transcription and transformation. The Myc family members Mad and Mxi1 are known to suppress Myc-induced transcription and transformation and to dimerize with Max to form ternary complexes with the mammalian Sin3 transcriptional corepressor (mSin3). The b-HLH-LZ domain of TFEB, which cannot heterodimerize within the Myc family, does not suppress Myc-induced transcription or transformation. However, transfer of a 25- to 36-aa region from Mad or Mxi1, which interacts with mSin3, to the b-HLH-LZ of TFEB, mediated profound suppression of Myc-induced transcription and transformation. These results suggest that the DNA binding specificities of the Myc family and non-Myc family b-HLH-LZ proteins, in the context of the cellular genes involved in Myc-induced transformation, are shared. The results also demonstrate that targeting mSin3 to CACGTG sites via a non-Myc family DNA binding domain is sufficient to oppose Myc activity in growth regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used stepwise photochemical cross-linking for specifically assembling soluble and covalent complexes made of a T-cell antigen receptor (TCR) and a class I molecule of the major histocompatibility complex (MHC) bound to an antigenic peptide. For that purpose, we have produced in myeloma cells a single-chain Fv construct of a TCR specific for a photoreactive H-2Kd-peptide complex. Photochemical cross-linking of this TCR single-chain Fv with a soluble form of the photoreactive H-2Kd-peptide ligand resulted in the formation of a ternary covalent complex. We have characterized the soluble ternary complex and showed that it reacted with antibodies specific for epitopes located either on the native TCR or on the Kd molecules. By preventing the fast dissociation kinetics observed with most T cell receptors, this approach provides a means of preparing soluble TCR-peptide-MHC complexes on large-scale levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary deficiency of factor IXa (fIXa), a key enzyme in blood coagulation, causes hemophilia B, a severe X chromosome-linked bleeding disorder afflicting 1 in 30,000 males; clinical studies have identified nearly 500 deleterious variants. The x-ray structure of porcine fIXa described here shows the atomic origins of the disease, while the spatial distribution of mutation sites suggests a structural model for factor X activation by phospholipid-bound fIXa and cofactor VIIIa. The 3.0-A-resolution diffraction data clearly show the structures of the serine proteinase module and the two preceding epidermal growth factor (EGF)-like modules; the N-terminal Gla module is partially disordered. The catalytic module, with covalent inhibitor D-Phe-1I-Pro-2I-Arg-3I chloromethyl ketone, most closely resembles fXa but differs significantly at several positions. Particularly noteworthy is the strained conformation of Glu-388, a residue strictly conserved in known fIXa sequences but conserved as Gly among other trypsin-like serine proteinases. Flexibility apparent in electron density together with modeling studies suggests that this may cause incomplete active site formation, even after zymogen, and hence the low catalytic activity of fIXa. The principal axes of the oblong EGF-like domains define an angle of 110 degrees, stabilized by a strictly conserved and fIX-specific interdomain salt bridge. The disorder of the Gla module, whose hydrophobic helix is apparent in electron density, can be attributed to the absence of calcium in the crystals; we have modeled the Gla module in its calcium form by using prothrombin fragment 1. The arched module arrangement agrees with fluorescence energy transfer experiments. Most hemophilic mutation sites of surface fIX residues occur on the concave surface of the bent molecule and suggest a plausible model for the membrane-bound ternary fIXa-FVIIIa-fX complex structure: fIXa and an equivalently arranged fX arch across an underlying fVIIIa subdomain from opposite sides; the stabilizing fVIIIa interactions force the catalytic modules together, completing fIXa active site formation and catalytic enhancement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T-cell receptors (TCRs) recognize peptide bound within the relatively conserved structural framework of major histocompatibility complex (MHC) class I or class II molecules but can discriminate between closely related MHC molecules. The structural basis for the specificity of ternary complex formation by the TCR and MHC/peptide complexes was examined for myelin basic protein (MBP)-specific T-cell clones restricted by different DR2 subtypes. Conserved features of this system allowed a model for positioning of the TCR on DR2/peptide complexes to be developed: (i) The DR2 subtypes that presented the immunodominant MBP peptide differed only at a few polymorphic positions of the DR beta chain. (ii) TCR recognition of a polymorphic residue on the helical portion of the DR beta chain (position DR beta 67) was important in determining the MHC restriction. (iii) The TCR variable region (V) alpha 3.1 gene segment was used by all of the T-cell clones. TCR V beta usage was more diverse but correlated with the MHC restriction--i.e., with the polymorphic DR beta chains. (iv) Two clones with conserved TCR alpha chains but different TCR beta chains had a different MHC restriction but a similar peptide specificity. The difference in MHC restriction between these T-cell clones appeared due to recognition of a cluster of polymorphic DR beta-chain residues (DR beta 67-71). MBP-(85-99)-specific TCRs therefore appeared to be positioned on the DR2/peptide complex such that the TCR beta chain contacted the polymorphic DR beta-chain helix while the conserved TCR alpha chain contacted the nonpolymorphic DR alpha chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Albeit anthracyclines are widely used in the treatment of solid tumors and leukemias, their mechanism of action has not been elucidated. The present study gives relevant information about the role of nonlamellar membrane structures in signaling pathways, which could explain how anthracyclines can exert their cytocidal action without entering the cell [Tritton, T. R. & Yee, G. (1982) Science 217, 248-250]. The anthracycline daunomycin reduced the formation of the nonlamellar hexagonal (HII) phase (i.e., the hexagonal phase propensity), stabilizing the bilayer structure of the plasma membrane by a direct interaction with membrane phospholipids. As a consequence, various cellular events involved in signal transduction, such as membrane fusion and membrane association of peripheral proteins [e.g., guanine nucleotide-binding regulatory proteins (G proteins and protein kinase C-alpha beta)], where nonlamellar structures (negative intrinsic monolayer curvature strain) are required, were altered by the presence of daunomycin. Functionally, daunomycin also impaired the expression of the high-affinity state of a G protein-coupled receptor (ternary complex for the alpha 2-adrenergic receptor) due to G-protein dissociation from the plasma membrane. In vivo, daunomycin also decreased the levels of membrane-associated G proteins and protein kinase C-alpha beta in the heart. The occurrence of such nonlamellar structures favors the association of these peripheral proteins with the plasma membrane and prevents daunomycin-induced dissociation. These results reveal an important role of the lipid component of the cell membrane in signal transduction and its alteration by anthracyclines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcriptional stimulation by the model activator GAL4-VP16 (a chimeric protein consisting of the DNA-binding domain of the yeast activator GAL4 and the acidic activation domain of the herpes simplex virus protein VP16) involves a series of poorly understood protein-protein interactions between the VP16 activation domain and components of the RNA polymerase II general transcription machinery. One of these interactions is the VP16-mediated binding and recruitment of transcription factor TFIIB. However, TATA box-binding protein (TBP)-associated factors (TAFs), or coactivators, are required for this interaction to culminate in productive transcription complex assembly, and one such TAF, Drosophila TAF40, reportedly forms a ternary complex with VP16 and TFIIB. Due to TFIIB's central role in gene activation, we sought to directly visualize the surfaces of this protein that mediate formation of the ternary complex. We developed an approach called protease footprinting in which the broad-specificity proteases chymotrypsin and alkaline protease were used to probe binding of 32P-end-labeled TFIIB to GAL4-VP16 or TAF40. Analysis of the cleavage products revealed two regions of TFIIB protected by VP16 from protease attack, one of which overlapped with a region protected by TAF40. The close proximity of the VP16 and TAF40 binding sites on the surface of TFIIB suggests that this region could act as a regulatory interface mediating the effects of activators and coactivators on transcription complex assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signaling by interferon gamma (IFN-gamma) requires two structurally related cell surface proteins: a ligand-binding polypeptide, known as the IFN-gamma receptor (IFN-gamma R), and an accessory factor. However, it is not known whether IFN-gamma forms a ternary complex with the IFN-gamma R and accessory factor to initiate signaling. Here we demonstrate complex formation between IFN-gamma and the two proteins, both in solution and at the cell surface. We observe complexes containing ligand, two molecules of IFN-gamma R (designated the IFN-gamma R alpha chain), and one or two molecules of accessory factor (designated the IFN-gamma R beta chain). Transfected cells expressing both IFN-gamma R chains bind IFN-gamma with higher affinity than do cells expressing alpha chain alone. Anti-beta-chain antibodies prevent the beta chain from participating in the ligand-receptor complex, reduce the affinity for IFN-gamma, and block signaling. Soluble alpha- or beta-chain extracellular domains also inhibit function. These results demonstrate that IFN-gamma signals via a high-affinity multisubunit complex that contains two types of receptor chain and suggest a potential approach to inhibiting specific actions of IFN-gamma by blocking the association of receptor subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage constitutes the second enzymological activity of RNA polymerase along with polymerization/pyrophosphorolysis of RNA, whereas the Gre proteins merely enhance this intrinsic property.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADPH-protochlorophyllide oxidoreductase (POR; EC 1.6.99.1) catalyzes the only known light-dependent step in chlorophyll synthesis of higher plants, the reduction of protochlorophyllide (Pchlide) to chlorophyllide. In barley, two distinct immunoreactive POR proteins were identified. In contrast to the light-sensitive POR enzyme studied thus far (POR-A), levels of the second POR protein remained constant in seedlings during the transition from dark growth to the light and in green plants. The existence of a second POR-related protein was verified by isolating and sequencing cDNAs that encode a second POR polypeptide (POR-B) with an amino acid sequence identity of 75% to the POR-A. In the presence of NADPH and Pchlide, the in vitro-synthesized POR-A and POR-B proteins could be reconstituted to ternary enzymatically active complexes that reduced Pchlide to chlorophyllide only after illumination. Even though the in vitro activities of the two enzymes were similar, the expression of their genes during the light-induced transformation of etiolated to green seedlings was distinct. While the POR-A mRNA rapidly declined during illumination of dark-grown seedlings and soon disappeared, POR-B mRNA remained at an approximately constant level in dark-grown and green seedlings. Thus these results suggest that chlorophyll synthesis is controlled by two light-dependent POR enzymes, one that is active only transiently in etiolated seedlings at the beginning of illumination and the other that also operates in green plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A folate analogue, 1843U89 (U89), with potential as a chemotherapeutic agent due to its potent and specific inhibition of thymidylate synthase (TS; EC 2.1.1.45), greatly enhances not only the binding of 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and dUMP to Escherichia coli TS but also that of dGMP, GMP, dIMP, and IMP. Guanine nucleotide binding was first detected by CD analysis, which revealed a unique spectrum for the TS-dGMP-U89 ternary complex. The quantitative binding of dGMP relative to GMP, FdUMP, and dUMP was determined in the presence and absence of U89 by ultrafiltration analysis, which revealed that although the binding of GMP and dGMP could not be detected in the absence of U89 both were bound in its presence. The Kd for dGMP was about the same as that for dUMP and FdUMP, with binding of the latter two nucleotides being increased by two orders of magnitude by U89. An explanation for the binding of dGMP was provided by x-ray diffraction studies that revealed an extensive stacking interaction between the guanine of dGMP and the benzoquinazoline ring of U89 and hydrogen bonds similar to those involved in dUMP binding. In addition, binding energy was provided through a water molecule that formed hydrogen bonds to both N7 of dGMP and the hydroxyl of Tyr-94. Accommodation of the larger dGMP molecule was accomplished through a distortion of the active site and a shift of the deoxyribose moiety to a new position. These rearrangements also enabled the binding of GMP to occur by creating a pocket for the ribose 2' hydroxyl group, overcoming the normal TS discrimination against nucleotides containing the 2' hydroxyl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactose, in particular α-lactose monohydrate, is the most used carrier for inhalation. Its surface and solid-state properties are of paramount importance in determining drug aerosolization performance. However, these properties may be altered by processing, such as micronization, thus affecting the product performance and stability. The present research project focused on the study of the effect of lactose solid-state on the aerosolization performance of drug-carrier mixtures, giving particular attention to the impact of micronization on lactose physico-chemical properties. The formation of a fraction of hygroscopic anhydrous α-lactose, rather than amorphous lactose, as a consequence of the mechanical stress stemming from micronization was evidenced by 1H NMR, XRPD and DSC analyses performed on samples of micronized lactose. The development of a new DVS method capable to identify and quantify different forms of α-lactose (hygroscopic anhydrous, stable anhydrous and amorphous), even simultaneously present in the same sample, confirmed the results obtained with the above-mentioned techniques. The influence of lactose solid-state on drug respirability was then evaluated through the preparation and in vitro aerodynamic assessment of ternary and binary mixtures containing two different drugs. In particular, the use, as carriers, of anhydrous forms of α-lactose in place of the conventional α-lactose monohydrate resulted in significantly improved respirability in the case of salbutamol sulphate and poorer performance in the case of budesonide. In an attempt to rationalize the obtained results, IGC was selected as a tool to investigate possible variations in the surface energy of the studied lactose carriers and APIs. A direct correlation between the total surface free energy of lactose carriers and drug respirability was not found. However, salbutamol sulphate and budesonide exhibited different specific surface free energy, to which the difference in the aerosolization performance may be, at least in part, ascribed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O aumento da resistência microbiana devido a fatores como uso excessivo e ineficiente de antibióticos convencionais acarreta a necessidade da busca por novos compostos bioativos que atuem por mecanismos de ação diferentes aos fármacos já conhecidos. Na agricultura, o uso intensivo de pesticidas para o combate de microrganismos que comprometem principalmente a parte alimentícia também traz diversos problemas relacionados à resistência antimicrobiana e a riscos ambientais, oriundos do acúmulo dessas substâncias no solo. Dentro deste aspecto, o pseudofungo Pythium aphanidermatum, da classe dos oomicetos, destaca-se por ser uma espécie agressiva e altamente resistente a fungicidas comuns, apodrecendo raízes e frutos de cultivos de tomate, beterraba, pepino, pimentão, etc. A própolis verde, constituída em sua grande parte por material resinoso coletado e processado pela abelha da espécie Apis mellifera tem sido utilizada na medicina tradicional devido ao seu amplo espectro de ações preventivas e tratamentos de doenças, possuindo propriedades anti-inflamatórias, antimicrobianas, anticancerígenas e antioxidantes, tornando-se um produto de grande interesse na busca de novos compostos bioativos. Dentro destes aspectos apresentados, neste trabalho investigamos a ação da própolis verde contra o fitopatógeno P. aphanidermatum e identificamos através da técnica de cromatografia e bioensaios que a Artepillin C (3,5-diprenil-4-ácido-hidroxicinâmico), majoritária na própolis verde, foi o principal composto nesta ação. Os efeitos terapêuticos desta molécula tem sido foco de muitos estudos, porém ainda não há evidência em sua interação com agregados anfifílicos que mimetizam membranas celulares. O caráter anfifílico do composto, elevado pela presença dos grupos prenilados ligados ao ácido cinâmico, favoreceram a sua inserção nas membranas modelo, principalmente em seu estado agregado. Estas conclusões puderam ser inferidas devido às alterações nas propriedades das bicamadas lipídicas na presença da Artepillin C, podendo causar, especificamente para o caso de fitopatógenos como o P. aphanidermatum, perdas funcionais das proteínas de membranas, liberação de eletrólitos intracelulares e desintegração citoplasmática dos micélios e esporos. Ainda, as diferentes composições lipídicas nas vesículas influenciam no modo de interação do composto e consequentes alterações em suas estruturas, principalmente na presença do colesterol, que auxilia na manutenção da permeabilidade da bicamada lipídica, que pode contribuir para a integridade do conteúdo citoplasmático da célula.