983 resultados para Stromal fibroblasts
Resumo:
Because increasing evidence point to the convergence of environmental and genetic risk factors to drive redox dysregulation in schizophrenia, we aim to clarify whether the metabolic anomalies associated with early psychosis reflect an adaptation to oxidative stress. Metabolomic profiling was performed to characterize the response to oxidative stress in fibroblasts from control individuals (n = 20) and early psychosis patients (n = 30), and in all, 282 metabolites were identified. In addition to the expected redox/antioxidant response, oxidative stress induced a decrease of lysolipid levels in fibroblasts from healthy controls that were largely muted in fibroblasts from patients. Most notably, fibroblasts from patients showed disrupted extracellular matrix- and arginine-related metabolism after oxidative stress, indicating impairments beyond the redox system. Plasma membrane and extracellular matrix, 2 regulators of neuronal activity and plasticity, appeared as particularly susceptible to oxidative stress and thus provide novel mechanistic insights for pathophysiological understanding of early stages of psychosis. Statistically, antipsychotic medication at the time of biopsy was not accounting for these anomalies in the metabolism of patients' fibroblasts, indicating that they might be intrinsic to the disease. Although these results are preliminary and should be confirmed in a larger group of patients, they nevertheless indicate that the metabolic signature of reactivity to oxidative stress may provide reliable early markers of psychosis. Developing protective measures aimed at normalizing the disrupted pathways should prevent the pathological consequences of environmental stressors.
Resumo:
Chemokines are small chemotactic molecules widely expressed throughout the central nervous system. A number of papers, during the past few years, have suggested that they have physiological functions in addition to their roles in neuroinflammatory diseases. In this context, the best evidence concerns the CXC-chemokine stromal cell-derived factor (SDF-1alpha or CXCL12) and its receptor CXCR4, whose signalling cascade is also implicated in the glutamate release process from astrocytes. Recently, astrocytic synaptic like microvesicles (SLMVs) that express vesicular glutamate transporters (VGLUTs) and are able to release glutamate by Ca(2+)-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Here, in order to elucidate whether SDF-1alpha/CXCR4 system can participate to the brain fast communication systems, we investigated whether the activation of CXCR4 receptor triggers glutamate exocytosis in astrocytes. By using total internal reflection (TIRF) microscopy and the membrane-fluorescent styryl dye FM4-64, we adapted an imaging methodology recently developed to measure exocytosis and recycling in synaptic terminals, and monitored the CXCR4-mediated exocytosis of SLMVs in astrocytes. We analyzed the co-localization of VGLUT with the FM dye at single-vesicle level, and observed the kinetics of the FM dye release during single fusion events. We found that the activation of CXCR4 receptors triggered a burst of exocytosis on a millisecond time scale that involved the release of Ca(2+) from internal stores. These results support the idea that astrocytes can respond to external stimuli and communicate with the neighboring cells via fast release of glutamate.
Resumo:
Summary Secondary lymphoid organs (SLOB), such as lymph nodes and spleen, are the sites where primary immune responses are initiated. T lymphocytes patrol through the blood and SLOs on the search for pathogens which are presented to them as antigens by dendritic cells. Stromal cells in the Tzone - so called T zone fibroblastic reticular cells (TRCs) -are critical in organizing the migration of T cells and dendritic cells by producing the chemoattractants CCL19 and CCL21 and by forming a network which T cells use as a guidance system. They also form a system of small channels or conduits that allow rapid transport of small antigen molecules or cytokines from the subcapsular sinus to high endothelial venules. The phenotype and function of TRCs have otherwise remained largely unknown. We found a critical role for lymph node access in CD4+ and CD8+ T cell homeostasis and identified TRCs within these organs as the major source of interleukin-7 (IL-7). IL-7 is an essential survival factor for naïve T lymphocytes of which the cellular source in the periphery had been poorly defined. In vitro, TRC were able to prevent the death of naïve T but not of B lymphocytes by secreting IL-7 and the CCR7 ligand CCL 19. Using gene-targeted mice, we show anon-redundant function of CCL19 in T cell homeostasis. The data suggest that TRCs regulate T cell numbers by providing a limited reservoir of survival factors for which T cells have to compete. They help to maintain a diverse T cell repertoire granting full immunocompetence. To determine whether TRCs also play a role in pathology, we characterized so-called tertiary lymphoid organs (TLOs) that often develop at sites of chronic inflammation. We show that TLOs resemble lymph nodes or Peyer's patches not only with regard to lymphoid cells. TLOs formed extensive TRC networks and a functional conduit system in all three marine inflammation models tested. In one model we dissected the cells and signals leading to the formation of these structures. We showed that they critically depend on the presence of lymphotoxin and lymphoid tissue inducer cells. TRCs in TLOs also produce CCL19, GCL21 and possibly IL-7 which are all involved in the development of TLOs. Stromal cells therefore play a central role in the onset and perpetuation of chronic inflammatory diseases and could be an interesting target for therapy. Résumé Le système immunitaire est la défense de notre corps contre toutes sortes d'infections et de tumeurs. II est constitué de différentes populations de lymphocytes qui patrouillent constamment le corps à la recherche de pathogène. Parmi eux, les lymphocytes T et B passent régulièrement dans les organes lymphoïdes secondaires (SLO) qui sont les sites d'initiation de la réponse immunitaire. Les lymphocytes T sont recrutés du sang aux SLO où ils cherchent leur antigène respectif présenté par des cellules dendritiques. Des cellules stromales dans la zone T -nommées fibroblastic reticular cells' (TRC) -sécrètent des chimiokines CCL19 et CCL21 et ainsi facilitent les rencontres entre lymphocytes T et cellules dendritiques. De plus, elles forment un réseau que les lymphocytes T utilisent comme système de guidage. Ce réseau forme des petits canaux (ou conduits) qui permettent le transport rapide, d'antigène soluble ou de cytokines, de la lymphe aux veinules à endothelium épais (HEV). Le phénotype ainsi que les autres fonctions des TRCs demeurent encore à ce jour inconnus. Nous avons trouvé que l'accès des lymphocytes T CD4+ et CD8+ aux ganglions joue un rôle central pour l'homéostasie. Interleukin-7 (IL-7) est un facteur de survie essentiel pour les lymphocytes T naïfs dont la source cellulaire dans la périphérie était mal définie. Nous avons identifié les TRCs dans les ganglions comme source principale d'interleukin-7 (IL-7). In vitro, les TRCs étaient capable de prévenir la mort des lymphocytes T mais pas celle de lymphocytes B grâce à la sécrétion d'IL-7 et de CCL19. En utilisant des souris déficientes du gène CCL19, nous avons observé que l'homéostasie des lymphocytes T dépend aussi de CCL19 in vivo. Les données suggèrent que les TRCs aident à maintenir un répertoire large et diversifié de cellules T et ainsi l'immunocompétence. Pour déterminer si les TRCs pourraient jouer un rote également dans la pathologie, nous avons caractérisé des organes lymphoïdes tertiaires (TLOs) souvent associés avec l'inflammation chronique. Les TLOs ressemblent à des ganglions ou des plaques de Peyer pas seulement en ce qui concerne la présence de lymphocytes. Nous avons constaté que les TLOs forment des réseaux de TRC et un système fonctionnel de conduits. La formation de ces structures est fortement diminuée dans l'absence du signal lymphotoxin ou des cellules connues comme ymphoid tissue-inducer tells: Les TRCs dans les TLOs produisent les chimiokines CCL19, CCL21 et possiblement aussi IL-7 qui sont impliquées dans le développement des TLOs. Les cellules stromales jouent donc un rôle central dans l'initation et la perpétuation des maladies inflamatoires chroniques et pourraient être une cible intéressante pour la thérapie.
Resumo:
A complementary DNA for a glucagon-like peptide-1 receptor was isolated from a human pancreatic islet cDNA library. The isolated clone encoded a protein with 90% identity to the rat receptor. In stably transfected fibroblasts, the receptor bound [125I]GLP-1 with high affinity (Kd = 0.5 nM) and was coupled to adenylate cyclase as detected by a GLP-1-dependent increase in cAMP production (EC50 = 93 pM). Two peptides from the venom of the lizard Heloderma suspectum, exendin-4 and exendin-(9-39), displayed similar ligand binding affinities to the human GLP-1 receptor. Whereas exendin-4 acted as an agonist of the receptor, inducing cAMP formation, exendin-(9-39) was an antagonist of the receptor, inhibiting GLP-1-induced cAMP production. Because GLP-1 has been proposed as a potential agent for treatment of NIDDM, our present data will contribute to the characterization of the receptor binding site and the development of new agonists of this receptor.
Resumo:
Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.
Resumo:
Embryonic stem cells (ESCs) offer attractive prospective as potential source of neurons for cell replacement therapy in human neurodegenerative diseases. Besides, ESCs neural differentiation enables in vitro tissue engineering for fundamental research and drug discovery aimed at the nervous system. We have established stable and long-term three-dimensional (3D) culture conditions which can be used to model long latency and complex neurodegenerative diseases. Mouse ESCs-derived neural progenitor cells generated by MS5 stromal cells induction, result in strictly neural 3D cultures of about 120-mum thick, whose cells expressed mature neuronal, astrocytes and myelin markers. Neurons were from the glutamatergic and gabaergic lineages. This nervous tissue was spatially organized in specific layers resembling brain sub-ependymal (SE) nervous tissue, and was maintained in vitro for at least 3.5 months with great stability. Electron microscopy showed the presence of mature synapses and myelinated axons, suggesting functional maturation. Electrophysiological activity revealed biological signals involving action potential propagation along neuronal fibres and synaptic-like release of neurotransmitters. The rapid development and stabilization of this 3D cultures model result in an abundant and long-lasting production that is compatible with multiple and productive investigations for neurodegenerative diseases modeling, drug and toxicology screening, stress and aging research.
Resumo:
PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.
Resumo:
Imatinib mesylate, a selective inhibitor of tyrosine kinases, has excellent efficacy in the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumour (GIST). Inducing durable responses and achieving prolonged survival, it has become the standard of care for the treatment of these diseases. It has opened the way to the development of additional tyrosine kinase inhibitors (TKIs), including sunitinib, nilotinib, dasatinib and sorafenib, all indicated for the treatment of various haematological malignancies and solid tumours. TKIs are prescribed for prolonged periods and are often taken by patients with - notably cardiovascular - comorbidities. Hence TKIs are regularly co-administered with cardiovascular drugs, with a considerable risk of potentially harmful drug-drug interactions due to the large number of agents used in combination. However, this aspect has received limited attention so far, and a comprehensive review of the published data on this important topic has been lacking. We review here the available data and pharmacological mechanisms of interactions between commonly prescribed cardiovascular drugs and the TKIs marketed at present. Regular updating of the literature on this topic will be mandatory, as will the prospective reporting of unexpected clinical observations, given the fact that these drugs have been only recently marketed.