980 resultados para Strength measurement
Resumo:
This paper reports the basic design of a new six component force balance system using miniature piezoelectric accelerometers to measure all aerodynamic forces and moments for a test model in hypersonic shock tunnel (HST2). Since the flow duration in a hypersonic shock tunnel is of the order of $1$ ms, the balance system [1] uses fast response accelerometers (PCB Piezotronics; frequency range of 1-10 kHz) for obtaining the aerodynamic data. The alance system has been used to measure the basic aerodynamic forces and moments on a missile shaped body at Mach $8$ in the IISc hypersonic shock tunnel. The experimentally measured values match well with theoretical predictions.
Resumo:
Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.
Resumo:
The data obtained in the earlier parts of this series for the donor and acceptor end parameters of N-H. O and O-H. O hydrogen bonds have been utilised to obtain a qualitative working criterion to classify the hydrogen bonds into three categories: "very good" (VG), "moderately good" (MG) and weak (W). The general distribution curves for all the four parameters are found to be nearly of the Gaussian type. Assuming that the VG hydrogen bonds lie between 0 and ± la, MG hydrogen bonds between ± 1 and ± 2, W hydrogen bonds beyond ± 2 (where is the standard deviation), suitable cut-off limits for classifying the hydrogen bonds in the three categories have been derived. These limits are used to get VG and MG ranges for the four parameters 1 and θ (at the donor end) and ± and ± (at the acceptor end). The qualitative strength of a hydrogen bond is decided by the cumulative application of the criteria to all the four parameters. The criterion has been further applied to some practical examples in conformational studies such as α-helix and can be used for obtaining suitable location of hydrogen atoms to form good hydrogen bonds. An empirical approach to the energy of hydrogen bonds in the three categories has also been presented.
Resumo:
A simple technique for determining the energy sensitivities for the thermographic recording of laser beams is described. The principle behind this technique is that, if a laser beam with a known spatial distribution such as a Gaussian profile is used for imaging, the radius of the thermal image formed depends uniquely on the intensity of the impinging beam. Thus by measuring the radii of the images produced for different incident beam intensities the minimum intensity necessary (that is, the threshold) for thermographic imaging is found. The diameter of the laser beam can also be found from this measurement. A simple analysis based on the temperature distribution in the laser heated material shows that there is an inverse square root dependence on pulse duration or period of exposure for the energy fluence of the laser beam required, both for the threshold and the subsequent increase in the size of the recording. It has also been shown that except for low intensity, long duration exposure on very low conductivity materials, heat losses are not very significant.