999 resultados para Starter, Jan Janszoon, 1594-1626.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eastern Mediterranean sediments are characterized by cyclic deposition of organic-rich sediments known as sapropels. Enhanced primary productivity combined with bottom water oxygen depletion are thought to be the main drivers for sapropel deposition. We selected sapropel layers from a suite of ODP-Leg 160 cores, and applied a set of geochemical proxies to determine paleo-productivity variations, redox conditions of the water column during deposition, and provenance of detrital material. High sedimentary Ba/Al and Corg contents indicate enhanced primary production, whereas the sedimentary La/Lu ratio, points to an enhanced contribution from a North African riverine source, during sapropel formation. These features are especially pronounced on Sapropels S5 and S7, deposited during a particularly warm climatic interval. This indicates a more intense North African drainage/weathering and consequently run-off for those sapropels that have the most enhanced expression of productivity too. Correspondingly, the latter has also resulted in bottom water redox conditions that have been more severe during these sapropels than during others. Deepwater formation from Adriatic and Aegean areas, thought to be mainly controlled by sustained cooling of preconditioned surface waters, triggers the onset of bottomwater ventilation, thus sapropel duration. Our data, therefore, suggest that the intensity of sapropel formation is determined by the North African monsoonal system, whereas their duration is directed by northern borderlands climatic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from the extreme global warmth of the early Eocene 'greenhouse' climate ~55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica ~34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from ~42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to ~1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse-icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in d13C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the d13C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.