989 resultados para Stains and staining


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A serologic response to hepatitis B virus (HBV) defined as 'anti-HBc alone' is commonly observed, but its significance remains unclear. This study aimed to define the relationship between 'anti-HBc alone' serostatus and HBV infection, including HBV-specific T- and B-cell memory responses. We enrolled 31 'anti-HBc alone' patients. Total HBV DNA and cccDNA were tested by nested polymerase chain reaction (PCR) analysis in liver samples from 22 'anti-HBc alone' patients vs controls (chronic or resolved HBV infection), followed by HBsAg/HBcAg immunohistochemical (IHC) staining. IFN-γ secretion by HBV-specific T cells was compared in individuals who were 'anti-HBc alone' (n = 27), resolved HBV (n = 21), chronic HBV (n = 24) and 12 healthy controls using enzyme-linked immunospot (ELISpot) assays. An HBsAg-IgG B-cell ELISpot assay was performed in 'anti-HBc alone' patients before and after one dose of recombinant HBsAg vaccine. The majority (23/31, 74.2%) of the 'anti-HBc alone' individuals were co-infected with HCV. Infrequent intrahepatic total HBV DNA (2/22, 9.1%) and cccDNA (1/22, 4.5%) were detected in biopsies; HBsAg and HBcAg IHC staining was negative. HBV-specific T-cell responses were similar between 'anti-HBc alone' individuals and HBV resolvers. Circulating HBV-memory B-cell responses were detected in all 'anti-HBc alone' individuals, consistent with an HBsAg-specific memory pool. After one HBV vaccine dose, increased anti-HBs antibody levels were observed, accompanied by an expansion of HBsAg-specific memory B cells (P = 0.0226). 'Anti-HBc alone' individuals showed HBV-specific T-cell and memory B-cell responses typical of previous viral exposure and protective memory, suggesting a resolved infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Enamel matrix derivatives (EMDs) have been used clinically for more than a decade for the regeneration of periodontal tissues. The aim of the present study is to analyze the effect on cell growth of EMDs in a gel carrier in comparison to EMDs in a liquid carrier. EMDs in a liquid carrier have been shown to adsorb better to bone graft materials. METHODS Primary human osteoblasts and periodontal ligament (PDL) cells were exposed to EMDs in both gel and liquid carriers and compared for their ability to induce cell proliferation and differentiation. Alizarin red staining and real-time polymerase chain reaction for expression of genes encoding collagen 1, osteocalcin, and runt-related transcription factor 2, as well as bone morphogenetic protein 2 (BMP2), transforming growth factor (TGF)-β1, and interleukin (IL)-1β, were assessed. RESULTS EMDs in both carriers significantly increased cell proliferation of both osteoblasts and PDL cells in a similar manner. Both formulations also significantly upregulated the expression of genes encoding BMP2 and TGF-β1 as well as decreased the expression of IL-1β. EMDs in the liquid carrier further retained similar differentiation potential of both osteoblasts and PDL cells by demonstrating increased collagen and osteocalcin gene expression and significantly higher alizarin red staining. CONCLUSIONS The results from the present study indicate that the new formulation of EMDs in a liquid carrier is equally as potent as EMDs in a gel carrier in inducing osteoblast and PDL activity. Future study combining EMDs in a liquid carrier with bone grafting materials is required to further evaluate its potential for combination therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the development of the viral-based prostate cancer vaccine, Ad5-PSA, much research has been orientated to help enhance the induced immune response by combining the vaccine with physical and chemical modulating agents, more specifically the polymers polyethylenimine (PEI), chitosan, and chitosan coated with CD3 complex antibodies; all previously shown to stimulate an immune response as isolated gene carriers. To compare the vaccine-induced immune responses between the naked vaccine and the polymer-vaccine combinations, a mouse model using the ovalbumin- specific Ad-OVA vaccine was tested using intracellular cytokine staining (ICS), tetramer staining, and cytotoxic T-cell lymphocyte assays to measure the activation of CD8+ T-cells, interferon gamma proteins (INFƒ×), and the induced cytotoxicity to ovalbumin. The Ad-OVA vaccine combined with both chitosan and chitosan with CD3 complex antibodies, both natural polymers, were found to induce similar immune responses to the naked vaccine while the vaccine combined with the synthetic polymer, PEI, diminished the immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective activation of a recipient oocyte and its compatibility with the nuclear donor are critical to the successful nuclear reprogramming during nuclear transfer. We designed a series of experiments using various activation methods to determine the optimum activation efficiency of bovine oocytes. We then performed nuclear transfer (NT) of embryonic and somatic cells into cytoplasts presumably at G1/S phase (with prior activation) or at metaphase II (MII, without prior activation). Oocytes at 24 hr of maturation in vitro were activated with various combinations of calcium ionophore A23187 (A187) (5 microM, 5 min), electric pulse (EP), ethanol (7%, 7 min), cycloheximide (CHX) (10 micro g/ml, 6 hr), and then cultured in cytochalasin D (CD) for a total of 18 hr. Through a series of experiments (Exp. 1-4), an improved activation protocol (A187/EP/CHX/CD) was identified and used for comparison of NT efficiency of embryonic versus somatic donor cells (Exp. 5). When embryonic cells from morula and blastocysts (BL) were used as nuclear donors, a significantly higher rate of blastocyst development from cloned embryos was obtained with G1/S phase cytoplasts than with MII-phase cytoplasts (36 vs. 11%, P < 0.05). In contrast, when skin fibroblasts were used as donor cells, the use of an MII cytoplast (vs. G1/S phase) was imperative for blastocyst development (30 vs. 6%, P < 0.05). Differential staining showed that parthenogenetic, embryonic, and somatic cloned BL contained 26, 29, and 33% presumptive inner cell mass (ICM) cells, respectively, which is similar to that of frozen-thawed in vivo embryos at a comparable developmental stage (23%). These data indicate that embryonic and somatic nuclei require different recipient cytoplast environment for remodeling/ reprogramming, and this is likely due to the different cell cycle stage and profiles of molecular differentiation of the transferred donor nuclei.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell development is a multistage process of differentiation that depends on proper thymocyte-thymic epithelial cell (TEC) interactions. Epithelial cells in the thymus are organized in a three-dimensional network that provides support and signals for thymocyte maturation. Concurrently, proper TEC differentiation in the adult thymus relies on thymocyte-derived signals. TECs produce interleukin-7 (IL-7), a non-redundant cytokine that promotes the survival, differentiation, and proliferation of thymocytes. We have identified IL-7 expressing TECs throughout ontogeny and in the adult thymus by in situ hybridization analysis. IL-7 expression is initiated in the thymic fated domain of the thymic primordium by embryonic day 11.5, in a Foxn1 independent pathway. Marked changes occur in the localization and regulation of IL-7 expressing TECs during development. Whereas IL-7 expressing TECs are present throughout the early thymic rudiment, the majority of IL-7 producing TECs are concentrated in the adult thymic medulla. By analyzing mouse strains that sustain blocks at different stages of thymocyte development, we show that IL-7 expression is initiated independently of hematopoietic-derived signals during thymic organogenesis. However, thymocyte-derived signals play an essential role in regulating IL-7 expression in the adult TEC compartment. Furthermore, distinct thymocyte subsets regulate the expression of IL-7 and keratin 5 in adult cortical epithelium. Intraperitoneal injection of Recombination Activating Gene deficient mice (RAG-2−/−) with anti-CD3ϵ monoclonal antibody (mAb) induces CD4− 8− double negative thymocytes to undergo β-selection and differentiate into CD4+8+ cells. Analysis of the thymic stromal compartment reveals that progression through β-selection renders thymocytes competent to alter the pattern of IL-7 expression in the cortical TEC compartment. RAG-2−/− mice do not generate mature T cells and therefore the RAG-2−/− thymus is devoid of organized medullary regions. Histological examination of RAG-2−/− thymus following anti-CD3ϵ stimulation reveals the emergence of mature thymic medullary regions, as assessed by H & E staining and expression of thymic stromal medullary markers. Stromal medullary reorganization occurs in the absence of T cell receptor αβ expression, suggesting that activation of RAG-2−/− thymocytes by CD3ϵ ligation generates thymocyte-derived signals that induce thymic epithelial reorganization, generating a mature medullary compartment. This model provides a tool to assess the mechanisms underlying thymic medullary development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The POU domain transcription factor Brn3b/POU4F2 plays a critical role regulating gene expression in mouse retinal ganglion cells (RGCs). Previous investigations have shown that Brn3b is not required for initial cell fate specification or migration; however, it is essential for normal RGC differentiation. In contrast to wild type axons, the mutant neurites were phenotypically different: shorter, rougher, disorganized, and poorly fasciculated. Wild type axons stained intensely with axon specific marker tau-1, while mutant projections were weakly stained and the mutant projections showed strong labeling with dendrite specific marker MAP2. Brn-3b mutant axonal projections contained more microtubules and fewer neurofilaments, a dendritic characteristic, than the wild type. The mutant neurites also exhibited significantly weaker staining of neurofilament low-molecular-weight (NF-L) in the axon when compared to the wild type, and NF-L accumulation in the neuron cell body. The absence of Brn-3b results in an inability to form normal axons and enhanced apoptosis in RGCs, suggesting that Brn-3b may control a set of genes involved in axon formation. ^ Brn3b contains several distinct sequence motifs: a glycine/serine rich region, two histidine rich regions, and a fifteen amino acid conserved sequence shared by all Brn3 family members in the N-terminus and a POU specific and POU homeodomain in the C-terminus. Brn3b activates a Luciferase reporter over 25 fold in cell culture when binding to native brn3 binding sites upstream of a minimal promoter. When fused to the Gal4 DNA Binding domain (DBD) and driven by either a strong (CMV) or weaker (pAHD) promoter, the N-terminal of Brn3b is capable of similar activation when binding to Gal4 UAS sites, indicating a presumptive activator of transcription. Both full length Brn3b or the C-terminus fused to the Gal4DBD and driven by pCMV repressed a Luciferase reporter downstream of UAS binding sites. Lower levels of expression of the fusion protein driven by pADH resulted in an alleviation of repression. This repression appears to be a limitation of this system of transcriptional analysis and a potential pitfall in conventional pCMV based transfection assays. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrant expression and/or activation of Src Family of non-receptor protein tyrosine kinases (SFKs) occur frequently during progressive stages of multiple types of human malignancies, including prostate cancer. Two SFKs, Src and Lyn, are expressed and implicated in prostate cancer progression. Work in this dissertation investigated the specific roles of Src and Lyn in the prostate tumor progression, and the effects of SFK inhibition on prostate tumor growth and lymph node metastasis in pre-clinical mouse models. ^ Firstly, using a pharmacological inhibitor of SFKs in clinical trials, dasatinib, I demonstrated that SFK inhibition affects both cellular migration and proliferation in vitro. Systemic administration of dasatinib reduced primary tumor growth, as well as development of lymph node metastases, in both androgen-sensitive and -resistant orthotopic prostate cancer mouse models. Immunohistochemical analysis of the primary tumors revealed that dasatinib treatment decreased SFK phosphorylation but not expression, resulting in decreased cellular proliferation and increased apoptosis. For this analysis of immunohistochemical stained tissues, I developed a novel method of quantifying immunohistochemical stain intensity that greatly reduced the inherent bias in analyzing staining intensity. ^ To determine if Src and Lyn played overlapping or distinct roles in prostate cancer tumor growth and progression, Src expression alone was inhibited by small-interfering RNA. The resulting stable cell lines were decreased in migration, but not substantially affected in proliferation rates. In contrast, an analogous strategy targeting Lyn led to stable cell lines in which proliferation rates were significantly reduced. ^ Lastly, I tested the efficacy of a novel SFK inhibitor (KX2-391) targeting peptide substrate-binding domain, on prostate cancer growth and lymph node metastasis in vivo. I demonstrated that KX2-391 has similar effects as dasatinib, an ATP-competitive small molecular inhibitor, on both the primary tumor growth and development of lymph node metastasis in vivo, work that contributed to the first-in-man Phase I clinical trial of KX2-391. ^ In summary, studies in this dissertation provide the first demonstration that Src and Lyn activities affect different cellular functions required for prostate tumor growth and metastasis, and SFK inhibitors effectively reduce primary tumor growth and lymph node metastasis. Therefore, I conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian Forkhead Box (Fox) transcription factor (FoxM1) is implicated in tumorgenesis. However, the role and regulation of FoxM1 in gastric cancer remain unknown.^ I examined FoxM1 expression in 86 cases of primary gastric cancer and 57 normal gastric tissue specimens. I found weak expression of FoxM1 protein in normal gastric mucosa, whereas I observed strong staining for FoxM1 in tumor-cell nuclei in various gastric tumors and lymph node metastases. The aberrant FoxM1 expression is associated with VEGF expression and increased angiogenesis in human gastric cancer. A Cox proportional hazards model revealed that FoxM1 expression was an independent prognostic factor in multivariate analysis. Furthermore, overexpression of FoxM1 by gene transfer significantly promoted the growth and metastasis of gastric cancer cells in orthotopic mouse models, whereas knockdown of FoxM1 expression by small interfering RNA did the opposite. Next, I observed that alteration of tumor growth and metastasis by elevated FoxM1 expression was directly correlated with alteration of VEGF expression and angiogenesis. In addition, promotion of gastric tumorigenesis by FoxM1 directly and significantly correlated with transactivation of vascular endothelial growth factor (VEGF) expression and elevation of angiogenesis. ^ To further investigate the underlying mechanisms that result in FoxM1 overexpression in gastric cancer, I investigated FoxM1 and Krüppel-like factor 4 (KLF4) expressions in primary gastric cancer and normal gastric tissue specimens. Concomitance of increased expression of FoxM1 protein and decreased expression of KLF4 protein was evident in human gastric cancer. Enforced KLF4 expression suppressed FoxM1 protein expression. Moreover, a region within the proximal FoxM1 promoter was identified to have KLF4-binding sites. Finally, I found an increased FoxM1 expression in gastric mucosa of villin-Cre -directed tissue specific Klf4-null mice.^ In summary, I offered both clinical and mechanistic evidence that dysregulated expression of FoxM1 play an important role in gastric cancer development and progression, while KLF4 mediates negative regulation of FoxM1 expression and its loss significantly contributes to FoxM1 dysregulation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macromolecular interactions, such as protein-protein interactions and protein-DNA interactions, play important roles in executing biological functions in cells. However the complexity of such interactions often makes it very challenging to elucidate the structural details of these subjects. In this thesis, two different research strategies were applied on two different two macromolecular systems: X-ray crystallography on three tandem FF domains of transcription regulator CA150 and electron microscopy on STAT1-importin α5 complex. The results from these studies provide novel insights into the function-structure relationships of transcription coupled RNA splicing mediated by CA150 and the nuclear import process of the JAK-STAT signaling pathway. ^ The first project aimed at the protein-protein interaction module FF domain, which often occurs as tandem repeats. Crystallographic structure of the first three FF domains of human CA150 was determined to 2.7 Å resolution. This is the only crystal structure of an FF domain and the only structure on tandem FF domains to date. It revealed a striking connectivity between an FF domain and the next. Peptide binding assay with the potential binding ligand of FF domains was performed using fluorescence polarization. Furthermore, for the first time, FF domains were found to potentially interact with DNA. DNA binding assays were also performed and the results were supportive to this newly proposed functionality of an FF domain. ^ The second project aimed at understanding the molecular mechanism of the nuclear import process of transcription factor STAT1. The first structural model of pSTAT1-importin α5 complex in solution was built from the images of negative staining electron microscopy. Two STAT1 molecules were observed to interact with one molecule of importin α5 in an asymmetric manner. This seems to imply that STAT1 interacts with importin α5 with a novel mechanism that is different from canonical importin α-cargo interactions. Further in vitro binding assays were performed to obtain more details on the pSTAT1-importin α5 interaction. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Activation of the sympathetic nervous system (SNS) in response to chronic biobehavioral stress results in high levels of catecholamines and persistent activation of adrenergic signaling, which promotes tumor growth and progression. However it is unknown how catecholamine levels within the tumor exceed systemic levels in circulation. I hypothesized that neo-innervation of tumors is required for stress-mediated effects on tumor growth. Results: First, I examined whether sympathetic nerves are present in human ovarian cancer samples as well as orthotopic ovarian cancer models. Immunohistochemical (IHC) staining for neurofilament revealed that catecholaminergic neurons are present within tumor tissue. In order to determine whether chronic stress affects the density of nerves in the tumor, I utilized an orthotopic mouse model of ovarian cancer that was exposed to daily restraint stress. IHC analysis revealed that nerve density in tumors increased by more than three-fold in stressed animals versus non-stressed controls. IHC analysis suggested that this results from both recruitment of existing neurons (axonogenesis) as well as new neuron formation (neurogenesis) within the tumor. To determine how tumors are recruiting nerve growth, I utilized a PCR array analysis of 84 nerve growth related genes and their receptors, which showed that stimulation of the SKOV3 ovarian cancer cell line with norepinephrine (NE) leads to increased expression of several neurotrophins, including brain-derived neurotrophic factor (BDNF). Neurite extension assays showed that media conditioned by ovarian cancer cell lines is capable of inducing neurite outgrowth in differentiated neuron-like PC12 cells, and NE treatment of cancer cells potentiates this effect. Norepinephrine-induced neurite extension was abolished after BDNF silencing by siRNA, suggesting that BDNF is critical to tumor cell-induced nerve growth. in vivo BDNF inhibition resulted in complete abrogation of stress-induced increases in tumor weight and nerve density, as well as downstream markers of stress. Discussion: These studies indicate that adrenergic signalling induced by chronic stress promotes neo-innervation in the tumor microenvironment. This results in a mutually beneficial relationship between the tumor cells and neurons. This work is crucial for providing a link between chronic stress and its effects on the tumor and its microenvironment. The data shown here aims to open new venues that can be used in development of therapies designed to block the stress effects on tumor growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid increase of the ultraviolet radiation (UVR)-related skin cancer incidence has attracted more and more public attention during the last few decades. Prevention and treatment of UVR-related skin cancer has become an important public health issue in the United States. Recent studies indicate that mutations in ras and/or p53 genes may be involved in UVR-induced skin tumor development but the precise molecular mechanism remains unclear. In this study, alterations of H-ras and p53 genes were investigated in different stages of carcinogenesis in a chronic UVR (solar simulator) exposure-induced Sencar mouse skin carcinogenesis model in order to clarify the role of the alterations of these genes during the skin carcinogenesis process and to further understand the mechanisms by which UVR causes skin cancer.^ Positive ras-p21 staining in cell membranes and cytosol were detected in 18/33 (55%) of squamous cell carcinomas (SCCs), but were not detected in UV-exposed skin, papillomas, or spindle cell tumors (SCTs). Positive staining of the malignant progression marker K13 was found in 17/33 (52%) of SCCs only. A significant positive correlation was observed between the K13 and the ras-p21 expression. Polymerase chain reaction (PCR)-based single strand conformation polymorphism (SSCP) analysis and gene sequencing analysis revealed three point mutations, one (codon 56) in UV-exposed non-tumor bearing skin and the other two (codons 21 and 13) in SCCs. No UV-specific mutation patterns were found.^ Positive p53 nuclear staining was found in 10/37 (27%) of SCCs and 12/24 (50%) of SCTs, but was not detected in normal skin or papillomas. PCR-based SSCP and sequencing analysis revealed eight point mutations in exons 5 and 6 (four in SCTs, two in SCCs, and two in UV-exposed skin) including six C-T or C-A transitions. Four of the mutations occurred at a dipyrimidine (CC) sequence. The pattern of the mutations indicated that the mutagenic lesions were induced by UVR.^ These results indicate that overexpression of ras-p21 in conjunction with aberrant expression of K13 occurred frequently in UVR-induced SCCs in Sencar mouse skin. The point mutation in the H-ras gene appeared to be a rare event in UVR skin carcinogenesis and may not be responsible for overexpression of ras-p21. UVR-induced P53 gene alteration is a frequent event in UVR-induced SCCs and later stage SCT tumors in Sencar mice skin, suggesting the p53 gene mutation plays an important role in skin tumor malignant progression. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell activation and expansion is essential for immune response against foreign antigens. However, uncontrolled T cell activity can be manifested as a number of lymphoid derived diseases such as autoimmunity, graft versus host disease, and lymphoma. The purpose of this research was to test the central hypothesis that the Jak3/Stat5 pathway is critical for T cell function. To accomplish this objective, two novel Jak3 inhibitors, AG490 and PNU156804, were identified and their effects characterized on Jak3/Stat5 activation and T cell growth. Inhibition of Jak3 selectively disrupted primary human T lymphocyte growth in response to Interleukin-2 (IL-2), as well as other γ c cytokine family members including IL-4, IL-7, IL-9, and IL-15. Inhibition of Jak3 ablated IL-2 induced Stat5 but not TNF-α mediated NF-κβ DNA binding. Loss of Jak3 activity did not affect T cell receptor mediated signals including activation of p56Lck and Zap70, or IL-2 receptor a chain expression. To examine the effects of Jak3/Stat5 inhibition within a mature immune system, we employed a rat heart allograft model of Lewis (RT1 1) to ACI (RT1a). Heart allograft survival was significantly prolonged following Jak3/Stat5 inhibition when rats were treated with AG490 (20mg/kg) or PNU156804 (80mg/kg) compared to non-treated control animals. This effect was synergistically potentiated when Jak3 inhibitors were used in combination with a signal 1/2 disrupter, cyclosporine, but only additively potentiated with another signal 3 inhibitor, rapamycin. This suggested that sequential inhibition of T cell function is more effective. To specifically address the role of Stat5 in maintaining T cell activity, novel Stat5 antisense oligonucleotides were synthesized and characterized in vitro. Primary human T cells and T-cell tumor lines treated with Stat5 antisense oligonucleotide (7.5 μM) rapidly underwent apoptosis, while no changes in cell cycle were observed as measured by FACS analysis utilizing Annexin-V-Fluorescein and Propidium iodide staining. Evidence is provided to suggest that caspase 8 and 9 pathways mediate this event. Thus, Stat5 may act rather as a negative regulator of apoptotic signals and not as a positive regulator of cell cycle as previously proposed. We conclude that the Jak3/Stat5 pathway is critical for γc cytokine mediated gene expression necessary for T cell expansion and normal immune function and represents an therapeutically relevant effector pathway to combat T cell derived disease. ^