996 resultados para Stained glass windows -- Colorado -- Denver.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Letter to S.D. Woodruff from A. Jeffrey importer of Hardware, Iron, Steel, and Window Glass of St. Catharines, Ont. regarding breakage and freight, June 23, 1875.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsigned letter to A. Jeffrey written on an envelope stating that the glass was free from breakage, therefore there would be a deduction of 10 percent, June 28, 1875.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receipt from Chance Brothers and Co. Glass Works near Birmingham, England regarding payment received for glass panes. This is accompanied by an envelope, April 6, 1875.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Note regarding cut glass prices, n.d.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receipt from John R. Monro, Tea, China, Glass and Crockery House, St. Catharines for kitchen items, shoes and mustard, April 12, 1887.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receipt from Chatfield and Neelon, St. Catharines for freezer, glass globe and fixtures, July 1, 1887.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Leadville Daily Herald, Colorado. Sections have been cut from the pages. This does affect the text as it appears that 2 articles are missing. February 26, 1882.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials exhibiting transparency and electrical conductivity simultaneously, transparent conductors, Transparent conducting oxides (TCOs), which have high transparency through the visible spectrum and high electrical conductivity are already being used in numerous applications. Low-emission windows that allow visible light through while reflecting the infrared, this keeps the heat out in summer, or the heat in, in winter. A thin conducting layer on or in between the glass panes achieves this. Low-emission windows use mostly F-doped SnO2. Most of these TCO’s are n type semiconductors and are utilized in a variety of commercial applications, such as flat-panel displays, photovoltaic devices, and electrochromic windows, in which they serve as transparent electrodes. Novel functions may be integrated into the materials since oxides have a variety of elements and crystal structures, providing great potential for realizing a diverse range of active functions. However, the application of TCOs has been restricted to transparent electrodes, notwithstanding the fact that TCOs are n-type semiconductors. The primary reason is the lack of p-type TCOs, because many of the active functions in semiconductors originate from the nature of the pn-junction. In 1997, H. Kawazoe et al.[2] reported CuAlO2 thin films as a first p-type TCO along with a chemical design concept for the exploration of other p-type TCOs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of glass additives on the densification , phase evolution, microstructure and microwave dielectric properties of Ba(Mg1;3 Ta2i3)03 (BMT) was investigated . Different weight percentages of quenched glass such as B203 , Si02, B203-SiO2, ZnO-B203, 5ZnO-2B2O3, Al203-SiO2, Na20-2B203.10H20, BaO-B203-SiO2, MgO-B203-SiO2, PbO-B203-SiO2 , ZnO-B203-SiO2 and 2MgO-Al203-5SiO2 were added to calcined BMT precursor . The sintering temperature of the glass -added BMT samples were lowered down to 1300 °C compared to solid-state sintering where the temperature was 1650 °C. The formation of high temperature satellite phases such as Ba5Ta4O15 and Ba7Ta6O22 were found to be suppressed by the glass addition . Addition of glass systems such as B203, ZnO-B203, 5ZnO-2B203 and ZnO-B203-SiO2 improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification . The microwave dielectric properties of undoped BMT with a densification of 93 . 1 % of the theoretical density were Cr = 24 . 8, Tr = 8 ppm/°C and Q„ x f= 80,000 GHz. The BMT doped with 1.0 wt% of B203 has Q„ x f = 124,700GHz, Cr = 24.2, and T f = -1.3 ppm /°C. The unloaded Q factor of 0.2 wt% ZnO-B203-doped BMT was 136,500 GHz while that of 1.0 wt% of 5ZnO-2B203 added ceramic was Q„ x f= 141,800 GHz . The best microwave quality factor was observed for ZnO -B203-SiO2 (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q„ x f= 152,800 GHz, F,= 25.5, and Tr = - 1.5 ppm/°C