998 resultados para Soil losses
Resumo:
It is often assumed that total head losses in a sand filter are solely due to the filtration media and that there are analytical solutions, such as the Ergun equation, to compute them. However, total head losses are also due to auxiliary elements (inlet and outlet pipes and filter nozzles), which produce undesirable head losses because they increase energy requirements without contributing to the filtration process. In this study, ANSYS Fluent version 6.3, a commercial computational fluid dynamics (CFD) software program, was used to compute head losses in different parts of a sand filter. Six different numerical filter models of varying complexities were used to understand the hydraulic behavior of the several filter elements and their importance in total head losses. The simulation results show that 84.6% of these were caused by the sand bed and 15.4% were due to auxiliary elements (4.4% in the outlet and inlet pipes, and 11.0% in the perforated plate and nozzles). Simulation results with different models show the important role of the nozzles in the hydraulic behavior of the sand filter. The relationship between the passing area through the nozzles and the passing area through the perforated plate is an important design parameter for the reduction of total head losses. A reduced relationship caused by nozzle clogging would disproportionately increase the total head losses in the sand filter
Resumo:
Using microdata, we analyse the determinants of firm relocation and conventional outsourcing decisions as a way to reduce employment. The results for a sample of 32 countries show the relevance of factors not considered previously in the literature. Firms that are below average in quality or innovation have a higher propensity to externalise part of their production through outsourcing, while lower relative profitability and longer time to market for new products each imply a higher probability of relocation.
Resumo:
In this work, using the EPR spectroscopy, we analysed the thermal stability of some organic-mineral compounds found in a Gleysoil from Rio Janeiro. It was observed a complete disappearance of the EPR signal around 600 °C for the < 2 µm fraction and a residual EPR signal of semiquinone free radical for the 2-20 µm and 20-53 µm fractions at the same temperature. Also, the experiments showed that the 2-20 µm fraction had a larger concentration of semiquinone free radical per g of carbon and a smaller line width indicated a larger humification of this fraction. This is an evidence that the soil organic matter of this fraction (2-20 µm) is more stable than the other ones.
Resumo:
The aim of the work is to study the existing analytical calculation procedures found in literature to calculate the eddy-current losses in surface mounted permanent magnets within PMSM application. The most promising algorithms are implemented with MATLAB software under the dimensional data of LUT prototype machine. In addition finite elements analyze, utilized with help of Flux 2D software from Cedrat Ltd, is applied to calculate the eddy-current losses in permanent magnets. The results obtained from analytical methods are compared with numerical results.
Resumo:
The efficiency of a new procedure for the digestion of natural waters, based on a microwave-activated photochemical reactor was evaluated in this work. Fluorescence spectra showed a 99% reduction in the emission of a 40 mg L-1 humic acid solution after 15 min of UV irradiation. In the presence of H2O2, only 3 min were necessary to accomplish a reduction of almost 100% in the emission and 6 min to reduce the concentration of dissolved organic carbon by 95%. The copper recovery from synthetic samples containing commercial humic acid, from soil suspensions, as well as from natural waters varied between 91.5 and 106.6%. The digestion of dissolved and unfiltered samples was successfully accomplished in 6 and 12 min, respectively. No contaminations or sample losses were observed. Results of copper speciation in natural waters showed that this metal is predominantly bound to natural ligands. Only 3-6% of the total recoverable copper is present in the labile form.
Resumo:
This study is focused on the dominance exerted by the invasive Argentine ant over native ants in a coastal Mediterranean area. Theimpact of this invasive ant on native ant assemblages and its consequences on total ant biomass and on the intensity of habitat explorationwere evaluated. Foraging ants were observed and their trajectories recorded during 5-minute periods in two study zones, one invaded andthe other non-invaded. Ant species detected, ant worker abundance, ant biomass and the intensity of soil surface searching done by antswere compared between the two zones. The Argentine ant invasion provoked a drastic reduction of the ant species richness. Apparentlyonly one native ant species is able to coexist with the Argentine ant, the cryptic Plagiolepis pygmaea. Ant worker abundance was also modified after the invasion: the number of Argentine ant workers detected, which represented 92% of the invaded zone, was two times higher than the number of native ant workers detected in the non-invaded zone. The total ant biomass was inversely affected, becoming four times lower in the invaded zone highly dominated by Linepithema humile. The higher number of Argentine ant workers and their fast tempo of activity implied an alteration of the intensity of soil surface searching: scanning by the Argentine ants in the invaded zone was higher than that done by the native ants in the non-invaded zone, and the estimated time for a complete soil surface scan was 64 minutes in the invaded zone and 108 minutes in the non-invaded zone. Consequently, resources will be discovered faster by ants in the invaded zone than in the non-invaded zone. The increase of the mean temperature and the decrease of the relative humidity from May to August reduced the ant activity in the two study zones but this reduction was greater in the invaded zone
Resumo:
Soil properties on the Cap de Creus Peninsula, NE Spain depend primarily on scarce agricultural practices and early abandonment. In the study area, 90% of which is mainly covered by Cistus shrubs, 8 environments representing variations in land use/land cover and soil properties at different depths were identified. In each environment variously vegetated areas were selected and sampled. The soils, collected at different depths, were classified as Lithic Xerorthents according to the United States Department of Agriculture system of soil classification (USDA-NRCS 1975). Differences in soil properties were largely found according to the evolution of the plant canopy and the land use history. To identify underlying patterns in soil properties related to environmental evolution, factor analysis was performed and factor scores were used to determine how the factor patterns varied between soil variables, soil depths and selected environments. The three-factor model always accounted for 80% of the total variation in the data at the different soil depths. Organic matter was the more relevant soil property at 0–2 cm depth, whereas active minerals (silt and clay) were found to be the most relevant soil parameters controlling soil dynamics at the other depths investigated. Results showed that vineyards and olive tree soils are poorly developed and present worse conditions for mineral and organic compounds. Analysis of factor scores allowed independent assessment of soils, depth and plant cover and demonstrated that soils present the best physico-chemical characteristics under Erica arborea and meadows. In contrast, soils under Cistus monspeliensis were less nutrient rich and less well structured
Resumo:
Soil respiration (SR) is a major component of ecosystems' carbon cycles and represents the second largest CO2 flux in the terrestrial biosphere. Soil temperature is considered to be the primary abiotic control on SR, whereas soil moisture is the secondary control factor. However, soil moisture can become the dominant control on SR in very wet or dry conditions. Determining the trigger that makes soil moisture as the primary control factor of SR will provide a deeper understanding on how SR changes under the projected future increase in droughts. Specific objectives of this study were (1) to investigate the seasonal variations and the relationship between SR and both soil temperature and moisture in a Mediterranean riparian forest along a groundwater level gradient; (2) to determine soil moisture thresholds at which SR is controlled by soil moisture rather than by temperature; (3) to compare SR responses under different tree species present in a Mediterranean riparian forest (Alnus glutinosa, Populus nigra and Fraxinus excelsior). Results showed that the heterotrophic soil respiration rate, groundwater level and 30 cm integral soil moisture (SM30) decreased significantly from the riverside moving uphill and showed a pronounced seasonality. SR rates showed significant differences between tree species, with higher SR for P. nigra and lower SR for A. glutinosa. The lower threshold of soil moisture was 20 and 17% for heterotrophic and total SR, respectively. Daily mean SR rate was positively correlated with soil temperature when soil moisture exceeded the threshold, with Q10 values ranging from 1.19 to 2.14; nevertheless, SR became decoupled from soil temperature when soil moisture dropped below these thresholds.
Resumo:
We studied the adsorption of glyphosate (GPS) onto soil mineral particles, using FT-IR and Mössbauer spectroscopy. From IR measurements for samples collected under native vegetation of a forest reserve, bands at 1632 and 1407 cm-1 could be attributed to the interaction between the carboxylic group of GPS and structural Al3+ and Fe3+ on the surface of mineral particles; bands at 1075 and 1000 cm-1 were observed only for cultivated soil. Mössbauer spectra for these soils were definitely fitted using a broad central doublet in addition to the magnetic component. This multiple quadrupolar component may be attributed to all non-magnetic Fe3+ contributions, including that of the GPS/Fe3+ complex.
Resumo:
Systematic studies were undertaken in the intra zeolitic media to better understand the ability of zeolite type LTA in occluded nitrogen used in fertilizer and soil conditioning. We have measured the dry matter production from the cultivation of corn in a greenhouse for about 40 days, and also the amounts of nitrogen absorbed, retained and lost by leaching. The dry matter production in the cultivation with different concentrations of nitrogen occluded in the zeolite, was more efficient than the traditional fertilizer, which demonstrated better use of nitrogen to reduce leaching losses, which implies a possible reduction of costs for nitrogen.
Resumo:
Distribution and stocks of soil organic matter (SOM) compartments after Pinus monoculture introduction in a native pasture area of a Cambisol, Santa Catarina, Brazil, were investigated. Pinus introduction increased soil acidity, content of exchangeable Al+3 and diminished soil nutrients. Nevertheless, soil C stock increased in all humic fractions of the 0-5 cm layer after Pinus afforestation. In the subsurface, the vegetation change only promoted SOM redistribution from the NaOH-extractable humic substances to a less hydrophobic humin fraction. Under Pinus, soil organo-mineral interactions were relevant up to a 15 cm depth, while in pasture environment, this mechanism occurred mainly in the surface layer.
Resumo:
The objective of this study was to evaluate the transport of one of the most toxic and best-selling herbicides in Brazil. The active ingredient 2,4-dichlorophenoxyacetic acid (2,4-D) was applied onto the surface of a tank-type lysimeter, filled with undisturbed soil, in Curitiba, Parana State. Samples of infiltration and runoff water were obtained during rain simulations. The concentrations of the active ingredient 2,4-D showed a rapid decrease in the environment, with mass losses of 29.12% by infiltration and 0.87% by runoff.
Resumo:
A furan-triazole derivative has been explored as an ionophore for preparation of a highly selective Pr(III) membrane sensor. The proposed sensor exhibits a Nernstian response for Pr(III) activity over a wide concentration range with a detection limit of 5.2×10-8 M. Its response is independent of pH of the solution in the range 3.0-8.8 and offers the advantages of fast response time. To investigate the analytical applicability of the sensor, it was applied successfully as an indicator electrode in potentiometric titration of Pr(III) solution and also in the direct and indirect determination of trace Pr(III) ions in some samples.