991 resultados para Simple Wave
Resumo:
We report both continuous-wave and passively mode-locked laser actions in a Yb3+-doped gadolinium yttrium oxyorthosilicate Yb:GdySiO(5) (Yb:GYSO) crystal. Continuous-wave (CW) laser operations were compared under different pump conditions with high-power diodes of different wavelengths and fiber cores. CW mode-locking was obtained with a semiconductor saturable absorber mirror.
Resumo:
We demonstrated continuous-wave ( CW) and Q-switched operation of a room-temperature Ho: YAlO3 laser that is resonantly end-pumped by a diode-pumped Tm: YLF laser at 1.91 mu m. The CW Ho: YAlO3 laser generated 5.5 W of linearly polarized (E parallel to c) output at 2118 nm with beam quality factor of M-2 approximate to 1.1 for an incident pump power of 13.8 W, corresponding to optical-to-optical conversion efficiency of 40%. Up to 1-mJ energy per pulse at pulse repetition frequency (PRF) of 5 kHz, and the maximum average power of 5.3-W with FWHM pulse duration of 30.5 ns at 20 kHz were achieved in Q-switched mode. (C) 2008 Optical Society of America.
Resumo:
We report on a diode-pumped, cryogenic and room temperature operation of a Tm,Ho:YAlO3 (c-cut) laser. In a temperature of 77 K, an optical-optical conversion efficiency of 27% and a slope efficiency of 29% were achieved with the maximum continuous-wave (CW) output power of 5.0 W at 2.13 mu m. Acousto-optic switched operation was performed at pulse repetition frequency (PRF) from 1 kHz to 10 kHz, the highest pulse energy of 3.3 mJ in a pulse duration of 40 ns was obtained. In room temperature (RT), the maximum CW power of Tm,Ho:YAlO3 laser was 160 mW with a slope efficiency of 11% corresponding to the absorbed pump power. (C) 2008 Optical Society of America.
Resumo:
Laser conditioning effects of the dielectric mirror coatings with different designs were investigated. Simple quarter-wave ZrO2:Y2O3/SiO2 mirrors and half-wave SiO2 over-coated ZrO2:Y2O3/SiO2 mirror coatings were fabricated by E-beam evaporation (EBE). The absorbance of the samples before and after laser conditioning was measured by surface thermal lensing (STL) technology and the defects density was detected under Nomarski microscope. The enhancement of the laser damage resistance was found after laser conditioning. The dependence of the laser conditioning on the coating design was also observed and the over-coated sample obtained greatest enhancement, whereas the absorbance of the samples did not change obviously. During the sub-threshold fluence raster scanning, the minor damage about defects size was found and the assumption of pre-damage mechanism, based on the functional damage concept, was put forward. The improvement of the laser induced damage threshold (LIDT) was attributed to the benign damage of the defects and the dependence on the coating design owed to the damage growth behavior of different coating designs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the framework of dielectric theory, the static non-local self-energy of an electron near an ultra-thin polarizable layer has been calculated and applied to study binding energies of image-potential states near free-standing graphene. The corresponding series of eigenvalues and eigenfunctions have been obtained by numerically solving the one-dimensional Schrodinger equation. The imagepotential state wave functions accumulate most of their probability outside the slab. We find that the random phase approximation (RPA) for the nonlocal dielectric function yields a superior description for the potential inside the slab, but a simple Fermi-Thomas theory can be used to get a reasonable quasi-analytical approximation to the full RPA result that can be computed very economically. Binding energies of the image-potential states follow a pattern close to the Rydberg series for a perfect metal with the addition of intermediate states due to the added symmetry of the potential. The formalism only requires a minimal set of free parameters: the slab width and the electronic density. The theoretical calculations are compared with experimental results for the work function and image-potential states obtained by two-photon photoemission.
Resumo:
We report on the design of a high diffraction efficiency multi-layer dielectric grating with wide incident angle and broad bandwidth for 800 nm. The optimized grating can achieve > 95% diffraction efficiency in the first order at an incident angle of 5 degrees from Littrow and a wavelength from 770nm to 830 nm, with peak diffraction efficiency of > 99.5% at 800 nm. The electric field distribution of the optimized multi-layer dielectric grating within the gratings ridge is 1.3 times enhancement of the incidence light, which presents potential high laser resistance ability. Because of its high-efficiency, wide incident, broad bandwidth and potential high resistance ability, the multi-layer dielectric grating should have practical application in Ti:sapphire laser systems.