999 resultados para Shannon-Wiener index
Resumo:
If stock and stock index futures markets are functioning properly price movements in these markets should best be described by a first order vector error correction model with the error correction term being the price differential between the two markets (the basis). Recent evidence suggests that there are more dynamics present than should be in effectively functioning markets. Using self-exciting threshold autoregressive (SETAR) models, this study analyses whether such dynamics can be related to different regimes within which the basis can fluctuate in a predictable manner without triggering arbitrage. These findings reveal that the basis shows strong evidence of autoregressive behaviour when its value is between the two thresholds but that the extra dynamics disappear once the basis moves above the upper threshold and their persistence is reduced, although not eradicated, once the basis moves below the lower threshold. This suggests that once nonlinearity associated with transactions costs is accounted for, stock and stock index futures markets function more effectively than is suggested by linear models of the pricing relationship.
Resumo:
In this article, we investigate the commonly used autoregressive filter method of adjusting appraisal-based real estate returns to correct for the perceived biases induced in the appraisal process. Many articles have been written on appraisal smoothing but remarkably few have considered the relationship between smoothing at the individual property level and the amount of persistence in the aggregate appraisal-based index. To investigate this issue we analyze a large sample of appraisal data at the individual property level from the Investment Property Databank. We find that commonly used unsmoothing estimates at the index level overstate the extent of smoothing that takes place at the individual property level. There is also strong support for an ARFIMA representation of appraisal returns at the index level and an ARMA model at the individual property level.
Resumo:
This article responds to criticisms that affective job satisfaction research suffers serious measurement problems: Noncomparable measures; studies conceptualizing job satisfaction affectively but measuring it cognitively; and ad hoc measures lacking systematic development and validation, especially across populations by nationality, job level, and job type. We address these problems through a series of qualitative (total N = 28) and quantitative (total N = 901) studies to systematically develop and validate a short affective job satisfaction measure ultimately deriving from Brayfield and Rothe’s (1951) job satisfaction index. Unlike any previous job satisfaction measure, the resulting four-item Brief Index of Affective Job Satisfaction is overtly affective, minimally cognitive, and optimally brief. The new measure also differs from any previous job satisfaction measure in being comprehensively validated not just for internal consistency reliability, temporal stability, convergent and criterion-related validities, but also for cross-population invariance by nationality, job level, and job type.
Resumo:
It is ironic that Otto Neurath, one of those responsible for the ‘linguistic turn’ in philosophy of the twentieth century, should have been concerned during the last twenty years of his life with developing a ‘pictorial language’. By using simplified pictograms as components, the Wiener Methode der Bildstatistik (later called Isotype) bypassed verbal language to a great extent, creating the potential for universal understanding of biological, social and economic correlations. However, despite its consistency and rigour, Isotype was not a complete language, and Neurath knew that it never could be. This paper will examine the linguistic characteristics of Isotype and describe the deliberate resistance on the part of its creators to develop a full theory behind it.
Resumo:
This paper investigates whether using natural logarithms (logs) of price indices for forecasting inflation rates is preferable to employing the original series. Univariate forecasts for annual inflation rates for a number of European countries and the USA based on monthly seasonal consumer price indices are considered. Stochastic seasonality and deterministic seasonality models are used. In many cases, the forecasts based on the original variables result in substantially smaller root mean squared errors than models based on logs. In turn, if forecasts based on logs are superior, the gains are typically small. This outcome sheds doubt on the common practice in the academic literature to forecast inflation rates based on differences of logs.
Resumo:
In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
Resumo:
We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memory
Resumo:
Now that stratospheric ozone depletion has been controlled by the Montreal Protocol1, interest has turned to the effects of climate change on the ozone layer. Climate models predict an accelerated stratospheric circulation, leading to changes in the spatial distribution of stratospheric ozone and an increased stratosphere-to-troposphere ozone flux. Here we use an atmospheric chemistry climate model to isolate the effects of climate change from those of ozone depletion and recovery on stratosphere-to-troposphere ozone flux and the clear-sky ultraviolet radiation index—a measure of potential human exposure to ultraviolet radiation. We show that under the Intergovernmental Panel on Climate Change moderate emissions scenario, global stratosphere-to- troposphere ozone flux increases by 23% between 1965 and 2095 as a result of climate change. During this time, the clear-sky ultraviolet radiation index decreases by 9% in northern high latitudes — a much larger effect than that of stratospheric ozone recovery — and increases by 4% in the tropics, and by up to 20% in southern high latitudes in late spring and early summer. The latter increase in the ultraviolet index is equivalent to nearly half of that generated by the Antarctic ‘ozone hole’ that was created by anthropogenic halogens. Our results suggest that climate change will alter the tropospheric ozone budget and the ultraviolet index, which would have consequences for tropospheric radiative forcing, air quality and human and ecosystem health.
Resumo:
Canopy leaf area index (LAI), defined as the single-sided leaf area per unit ground area, is a quantitative measure of canopy foliar area. LAI is a controlling biophysical property of vegetation function, and quantifying LAI is thus vital for understanding energy, carbon and water fluxes between the land surface and the atmosphere. LAI is routinely available from Earth Observation (EO) instruments such as MODIS. However EO-derived estimates of LAI require validation before they are utilised by the ecosystem modelling community. Previous validation work on the MODIS collection 4 (c4) product suggested considerable error especially in forested biomes, and as a result significant modification of the MODIS LAI algorithm has been made for the most recent collection 5 (c5). As a result of these changes the current MODIS LAI product has not been widely validated. We present a validation of the MODIS c5 LAI product over a 121 km2 area of mixed coniferous forest in Oregon, USA, based on detailed ground measurements which we have upscaled using high resolution EO data. Our analysis suggests that c5 shows a much more realistic temporal LAI dynamic over c4 values for the site we examined. We find improved spatial consistency between the MODIS c5 LAI product and upscaled in situ measurements. However results also suggest that the c5 LAI product underestimates the upper range of upscaled in situ LAI measurements.
Resumo:
Pardo, Patie, and Savov derived, under mild conditions, a Wiener-Hopf type factorization for the exponential functional of proper Lévy processes. In this paper, we extend this factorization by relaxing a finite moment assumption as well as by considering the exponential functional for killed Lévy processes. As a by-product, we derive some interesting fine distributional properties enjoyed by a large class of this random variable, such as the absolute continuity of its distribution and the smoothness, boundedness or complete monotonicity of its density. This type of results is then used to derive similar properties for the law of maxima and first passage time of some stable Lévy processes. Thus, for example, we show that for any stable process with $\rho\in(0,\frac{1}{\alpha}-1]$, where $\rho\in[0,1]$ is the positivity parameter and $\alpha$ is the stable index, then the first passage time has a bounded and non-increasing density on $\mathbb{R}_+$. We also generate many instances of integral or power series representations for the law of the exponential functional of Lévy processes with one or two-sided jumps. The proof of our main results requires different devices from the one developed by Pardo, Patie, Savov. It relies in particular on a generalization of a transform recently introduced by Chazal et al together with some extensions to killed Lévy process of Wiener-Hopf techniques. The factorizations developed here also allow for further applications which we only indicate here also allow for further applications which we only indicate here.
Resumo:
The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism.