983 resultados para Sensory Properties
Resumo:
Obtaining information about soil properties under different agricultural uses to plan soil management is very important with a view to sustainability in the different agricultural systems. The aim of this study was to evaluate changes in certain indicators of the physical quality of a dystrophic Red Latosol (Oxisol) under different agricultural uses. The study was conducted in an agricultural area located in northern Paraná State. Dystrophic Red Latosol samples were taken from four sites featuring different types of land use typical of the region: pasture of Brachiaria decumbens (P); sugarcane (CN); annual crops under no-tillage (CAPD); and native forest (permanent conservation area) (control (C)). For each land use, 20 completely randomized, disturbed and undisturbed soil samples were collected from the 0-20 cm soil layer, to determine soil texture, volume of water-dispersible clay, soil flocculation (FD), particle density, quantity of organic matter (OM), soil bulk density (Ds), soil macroporosity (Ma) and microporosity (Mi), total soil porosity (TSP), mean geometric diameter of soil aggregates (MGD), and penetration resistance (PR). The results showed differences in OM, FD, MGD, Ds, PR, and Ma between the control (soil under forest) and the areas used for agriculture (P, CN and CAPD). The soils of the lowest physical quality were those used for CN and CAPD, although only the former presented a Ma level very close to that representing unfavorable conditions for plant growth. For the purposes of this study, the physical properties studied were found to perform well as indicators of soil quality.
Resumo:
Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1) and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R²) varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.
Resumo:
Glutamine synthetase (GS) catalyses the ATP-dependent formation of glutamine from glutamate and ammonia. To determine whether dorsal root ganglion (DRG) cells from chick embryos express the enzyme in vivo or in vitro, GS was detected by immunocytochemical reaction either in vibratome sections of DRG or in dissociated DRG cell cultures. The immunocytochemical detection of GS showed that in vivo the DRG taken from chick embryos at day 10 (E10), E14, E18 or from chickens after hatching were free of any GS-positive ganglion cells; in contrast, in neuron-enriched cultures of DRG cells grown in vitro at E10, virtually all the neuronal cells (98.6 +/- 1.0%) express GS at 3, 5 or 7 days of culture. In mixed DRG cell cultures, only 83.6+/-4.6% of the neurons displayed a GS-immunoreactivity. In both culture conditions, neither the presence of horse serum nor the age of the culture appeared to affect the percentage of neurons which displayed a GS-immunoreactivity. After [3H]glutamine uptake, radioautographs revealed that only 80% of the neurons were labelled in neuron-enriched DRG cell cultures while 96% of the neurons were radioactive in mixed DRG cell cultures. Furthermore the most heavily [3H]glutamine-labelled neurons were exclusively found in mixed DRG cell cultures. Combination of both immunocytochemical detection of GS and radioautography after [3H]glutamine uptake showed that strongly GS-immunostained neurons corresponded to poorly radioactive ones and vice versa. When skeletal muscle extract (ME) was added to DRG cell cultures, the number of GS-positive neurons was reduced to 77.5 +/- 2.5% in neuron-enriched cultures or to 43.6 +/- 3.8% in mixed DRG cell cultures; in both types of culture, the intensity of the neuronal immunostaining was depressed. Furthermore, combined action of ME and non-neuronal cells potentiates the enzyme repression exerted separately by ME or non-neuronal cells. Since GS-immunoreactivity is expressed in DRG cells grown in vitro, but not in vivo, it is suggested that microenvironmental factors influence the expression of GS. More specifically, the repression of GS by primary sensory neurons grown in vitro may be strongly induced by soluble factors present in skeletal muscle, and to a lesser extent in brain, and potentiated by non-neuronal cells.
Resumo:
The Family Attitude Scale (FAS) is a self-report measure of critical or hostile attitudes and behaviors towards another family member, and demonstrates an ability to predict relapse in psychoses. Data are not currently available on a French version of the scale. The present study developed a French version of the FAS, using a large general population sample to test its internal structure, criterion validity and relationships with the respondents' symptoms and psychiatric diagnoses, and examined the reciprocity of FAS ratings by respondents and their partners. A total of 2072 adults from an urban population undertook a diagnostic interview and completed self-report measures, including an FAS about their partner. A subset of participants had partners who also completed the FAS. Confirmatory factor analyses revealed an excellent fit by a single-factor model, and the FAS demonstrated a strong association with dyadic adjustment. FAS scores of respondents were affected by their anxiety levels and mood, alcohol and anxiety diagnoses, and moderate reciprocity of attitudes and behaviors between the partners was seen. The French version of the FAS has similarly strong psychometric properties to the original English version. Future research should assess the ability of the French FAS to predict relapse of psychiatric disorders.
Resumo:
Due to human activity, large amounts of organic residue are generated daily. Therefore, an adequate use in agricultural activities requires the characterization of the main properties. The chemical and physical characterization is important when planning the use and management of organic residue. In this study, chemical and physical properties of charcoal, coffee husk, pine-bark, cattle manure, chicken manure, coconut fiber, sewage sludge, peat, and vermiculite were determined. The following properties were analyzed: N-NH4+, N-N0(3)-, and total concentrations of N, P, S, K, Ca, Mg, Mn, Zn, Cu, and B, as well as pH, Electrical Conductivity (EC) and bulk density. Coffee husk, sewage sludge, chicken manure and cattle manure were generally richer in nutrients. The EC values of these residues were also the highest (0.08 - 40.6 dS m-1). Peat and sewage sludge had the highest bulky density. Sodium contents varied from 0 to 4.75 g kg-1, with the highest levels in chicken manure, cattle manure and sewage sludge. Great care must be taken when establishing proportions of organic residues in the production of substrates with coffee husk, cattle or chicken manure or sewage sludge in the calculation of the applied fertilizer quantity in crop fertilization programs.
Resumo:
This study had the purpose of evaluating the effects of two management types of sugarcane: harvesting of burnt cane (BCH) and mechanized harvesting of unburnt green cane (MCH), on some soil physical properties of a dystrophic Rhodic Haplustox. The data were then compared with results for the same soil type under native forest. A completely randomized design was used, with three treatments and 20 replications. The following characteristics were determined: organic matter, aggregate stability, soil bulk density, and porosity at depths of 0-0.20 m and soil penetration resistance. After 15 years of cultivation, there were some alterations in the soil under cane burnt before harvesting, evidenced by a drop in the weighted average diameter of stable aggregates in water and increased soil bulk density. Significant changes were also detected in total porosity and pore distribution under both harvesting systems. Critical values for penetration resistance were observed in the area under mechanized sugar cane harvesting, with a value of 4.5 MPa in the 40-55 cm layer. This value is considered high and could indicate compaction and restriction of root growth. Soil properties under the green cane (unburned) management system were closest to those of the soil under native forest.
Resumo:
The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.
Resumo:
Statistical models allow the representation of data sets and the estimation and/or prediction of the behavior of a given variable through its interaction with the other variables involved in a phenomenon. Among other different statistical models, are the autoregressive state-space models (ARSS) and the linear regression models (LR), which allow the quantification of the relationships among soil-plant-atmosphere system variables. To compare the quality of the ARSS and LR models for the modeling of the relationships between soybean yield and soil physical properties, Akaike's Information Criterion, which provides a coefficient for the selection of the best model, was used in this study. The data sets were sampled in a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart. At each sampling point, soybean samples were collected for yield quantification. At the same site, soil penetration resistance was also measured and soil samples were collected to measure soil bulk density in the 0-0.10 m and 0.10-0.20 m layers. Results showed autocorrelation and a cross correlation structure of soybean yield and soil penetration resistance data. Soil bulk density data, however, were only autocorrelated in the 0-0.10 m layer and not cross correlated with soybean yield. The results showed the higher efficiency of the autoregressive space-state models in relation to the equivalent simple and multiple linear regression models using Akaike's Information Criterion. The resulting values were comparatively lower than the values obtained by the regression models, for all combinations of explanatory variables.