994 resultados para Sea-Ice Marginal-Ice-Zone Waves Modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2015S18, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXX/2 (PS89). The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-03 and 2015-01-18 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Net Primary Production was measured using the 14**C uptake method with minor modifications. Melted sea ice samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).