988 resultados para Scorpaena plumieri venom
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
CHAPTER II: Snake venoms are a complex mixture of organic and inorganic compounds, proteins and peptides such as aminotransferases, acetylcholinesterase, hyaluronidases, L-amino acid oxidase, phospholipase A2, metalloproteases, serine proteases, lectins, disintegrins, and others. Phospholipase A2 directly or indirectly influence the pathophysiological effect on envenomation, as well as their participation in the digestion of the prey. They have several other activities such as hemolytic indirect action, cardiotoxicity, aggregating of platelets, anticoagulant, edema, myotoxic and inflammatory activities. In this work, we describe the functional characterization of BaltMTx, a PLA2 from Bothrops alternatus that inhibits platelet aggregation and present bactericidal effect. The purification of BaltMTx was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, followed by hydrophobic chromatography on Phenyl–Sepharose and affinity chromatography on HiTrap™ Heparin HP). The protein was purified to homogeneity as judged by its migration profile in SDS–PAGE stained with coomassie blue, and showed a molecular mass of about 15 kDa under reducing conditions and approximately 25 kDa in non-reducing conditions. BaltMTx showed a rather specific inhibitory effect on platelet aggregation induced by epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by collagen or adenosine diphosphate. BaltMTx also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. High concentrations of BatlMTx stimulated the proliferation of Leishmania (Leishmania) infantum and Leishmania (Viania) braziliensis. BaltMTx induced production of inflammatory mediators such as IL-10, IL-12, TNF-α and NO. BaltMTx could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders as well as bactericidal agent.
Resumo:
Fasciola hepatica, commonly known as liver fluke, is a trematode which causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterisation of FhTeg glycosylation using lectin microarrays to characterise carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. While some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components which could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Resumo:
Ecomorphology is a science based on the idea that morphological differences among species could be associated with distinct biological and environmental pressures suffered by them. These differences can be studied employing morphological and biometric indexes denominated Ecomorphological attributes , representing standards that express characteristics of the individual in relation to its environment, and can be interpreted as indicators of life habits or adaptations suffered due its occupation of different habitats. This work aims to contribute for the knowledge of the ecomorphology of the Brazilian marine ichthyofauna, specifically from Galinhos, located at Rio Grande do Norte state. 10 different species of fish were studied, belonging the families Gerreidae (Eucinostomus argenteus), Haemulidae (Orthopristis ruber,Pomadasyscorvinaeformis,Haemulonaurolineatum,Haemulonplumieri,Haemulonsteindachneri), Lutjanidae (Lutjanus synagris), Paralichthyidae (Syaciummicrurum), Bothidae (Bothus ocellatus) and Tetraodontidae (Sphoeroidestestudineus), which were obtained during five collections, in the period time of September/2004 to April/2005, utilizing three special nets. The ecomorphological study was performed at the laboratory. Eight to ten samples of each fish specie were measured. Fifteen morphological aspects were considered to calculate twelve ecomorphological attributes. Multivariate statistical analysis methods such as Principal Component Analysis (PCA) and Cluster Analysis were done to identify ecmorphological patterns to describe the data set obtained. As results, H.aurolineatumwas the most abundant specie found (23,03%) and S.testudineusthe less one with 0,23%. The 1st Principal component showed variation of 60,03% with influence of the ecomorphological attribute related to body morphology, while the 2nd PC with 23,25% variation had influence of the ecomorphological attribute related to oral morphology. The Cluster Analiysis promoted the identification of three distinct groups Perciformes, Pleuronectiformes and Tetraodontiformes. Based on the obtained data, considering morphological characters differences among the species studied, we suggest that all of them live at the medium (E.argenteus,O.rubber, P.corvinaeformis,H.aurolineatum,H.plumieri,H.steindachneri,L.synagris) and bottom (S.micrurum,B.ocellatus,S.testudineus) region of column water.
Resumo:
A 67-year-old woman developed severe edema of her right hand and forearm, for which she was treated with antibiotics, without benefit. The echography excluded a venous thrombosis. Subsequently, she referred a wasp sting before the development of the edema. Specific Hymenoptera venom immunoglobulin E (IgE) was found to be positive for paper wasp and yellow jacket. A large local reaction (LLR) was diagnosed due to the hymenoptera sting. Self-injectable epinephrine was prescribed for possible, though unlikely, systemic reactions following hymenoptera stings.
Resumo:
Oxidative refolding is one of the key challenges hampering the development of peptide based compounds as therapeutics. The correct refolding for three disulfide peptide like w-Conotoxi n MVIIA is difficult and crucial for biological activity. This work advanced knowledge of chemical and biological for improve oxidative refolding of synthetic w-Conotoxi n MVIIA in base of Conus magus venom. The present study aimed to set up an appropriate and effective protocols for refolding of disulfide-rich w-Conotoxin MVIIA. In this study, the crude peptide was protected with Acm group, according to the right amino acid sequences (Synthesized by Australian Company). The crude peptide was purified by H PLC. To prepare the peptide to refolding, innovative deprotection applied molar ratio (AMR) method was performed based on mercury. Accuracy of deprotection was approved by reverse phase chromatography. The deprotected target peptide (omega-conotoxin) was determined by SDS-PAGE. Then the Oxidative refolding of target peptide was performed in six protocol based on Guanidinium chloride and oxidized and reduced Glutathione. Analgesic effect of refolded peptide was surveyed with formalin test in mice Balb/c. Non neurotoxic effects of target peptides were survey with ICV injection in mice model (C57/BL6). The innovative deprotection protocol performed based on the best ratio of mercury/2-mercaptoethanol adjusted to 1mg/10p1 in 90 minute. The results showed the yield and purity of omega-conotoxin MVIIA as 93 and 95%, respectively. Refolding of 40 mg omega Conotoxin with GSSG and GSH on ratio of 10:1 and 20 mM ammonium acetate showed the best analgesic effect compared with the other methods. The result showed 95.5% yield and 98% purity of omega-conotoxin MVIIA in this refolding method. Related refolding method reduced 85% pain in experimented mice using 7 ng of the peptide. That was 71.5 fold stronger than morphine and 2 times than standard Prialt®. And it was not neurotoxic in mice. In this study, refolding method for omega-conotoxin MVIIA was optimized in the fourth factor including: reducing the time, amount and number of reagent and increase the efficiency. We introduced new method for deprotection of omega-conotoxin MVIIA. Effective, economic and applied refolding and deprotecti on method was performed in this research may al so be applied to similar omega conotoxin peptides.
Resumo:
In Brazil, accidents with scorpions are considered of medical importance, not only by the high incidence, but also for the potentiality of the venom from some species in determining severe clinical conditions. Tityus stigmurus is a widely distributed scorpion species in Northeastern Brazil and known to cause severe human envenomations, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the molecular repertoire from the non-stimulated venom gland of Tityus stigmurus scorpion. A cDNA library was constructed and 540 clones were sequenced and grouped into 37 clusters, with more than one EST (expressed sequence tag) and 116 singlets. Forty-one percent of ESTs belong to recognized toxin-coding sequences, with antimicrobial toxins (AMP-like) the most abundant transcripts, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% include other possible venom molecules , whose transcripts correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%. This investigation provides the first global view of cDNAs from Tityus stigmurus. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or atypical types of venom peptides and proteins from the Buthidae family
Resumo:
Cnidarians are often considered simple animals, but the more than 13,000 estimated species (e.g., corals, hydroids and jellyfish) of the early diverging phylum exhibit a broad diversity of forms, functions and behaviors, some of which are demonstrably complex. In particular, cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Some cubozoan species possess complex mating behaviors or particularly potent stings, and all possess well-developed light sensation involving image-forming eyes. Like all cnidarians, cubozoans have specialized subcellular structures called nematocysts that are used in prey capture and defense. The objective of this study is to contribute to the development of the box jellyfish Alatina alata as a model cnidarian. This cubozoan species offers numerous advantages for investigating morphological and molecular traits underlying complex processes and coordinated behavior in free-living medusozoans (i.e., jellyfish), and more broadly throughout Metazoa. First, I provide an overview of Cnidaria with an emphasis on the current understanding of genes and proteins implicated in complex biological processes in a few select cnidarians. Second, to further develop resources for A. alata, I provide a formal redescription of this cubozoan and establish a neotype specimen voucher, which serve to stabilize the taxonomy of the species. Third, I generate the first functionally annotated transcriptome of adult and larval A. alata tissue and apply preliminary differential expression analyses to identify candidate genes implicated broadly in biological processes related to prey capture and defense, vision and the phototransduction pathway and sexual reproduction and gametogenesis. Fourth, to better understand venom diversity and mechanisms controlling venom synthesis in A. alata, I use bioinformatics to investigate gene candidates with dual roles in venom and digestion, and review the biology of prey capture and digestion in cubozoans. The morphological and molecular resources presented herein contribute to understanding the evolution of cubozoan characteristics and serve to facilitate further research on this emerging cubozoan model.
Resumo:
In this work we isolated a novel crotamine like protein from the Crotalus durissus cascavella venom by combination of molecular exclusion and analytical reverse phase HPLC. Its primary structure was:YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRK-CCKKGS GK. This protein showed a molecular mass of 4892.89 da that was determined by Matrix Assisted Laser Desorption Ionization Time-of-flight (MALDI-TOF) mass spectrometry. The approximately pI value of this protein was determined in 9.9 by two-dimensional electrophoresis. This crotamine-like protein isolated here and that named as Cro 2 produced skeletal muscle spasm and spastic paralysis in mice similarly to other crotamines like proteins. Cro 2 did not modify the insulin secretion at low glucose concentration (2.8 and 5.6 mM), but at high glucose concentration (16.7 mM) we observed an insulin secretion increasing of 2.7-3.0-fold than to control. The Na+ channel antagonist tetrodoxin (6 mM) decreased glucose and Cro 2-induced insulin secretion. These results suggested that Na+ channel are involved in the insulin secretion. In this article, we also purified some peptide fragment from the treatment of reduced and carboxymethylated Cro 2 (RC-Cro 2) with cyanogen bromide and protease V8 from Staphylococcus aureus. The isolated pancreatic beta-cells were then treated with peptides only at high glucose concentration (16.7 mM), in this condition only two peptides induced insulin secretion. The amino acid sequence homology analysis of the whole crotamine as well as the biologically-active peptide allowed determining the consensus region of the biologically-active crotamine responsible for insulin secretion was KGGHCFPKE and DCRWKWKCCKKGSG.
Resumo:
Three new solanidane alkaloids bearing a 22,23-epoxy ring (1-3) and four known compounds were isolated from leaves of Solanum campaniforme. The structures were determined using spectroscopic techniques, including ID and 2D NMR, and HRESIMS experiments. The antiophidic activity of the alkaloids was tested against Bothrops pauloensis venom. Compounds 1-3 completely inhibited myotoxicity without inhibiting phospholipase A(2) activity of the venom, while hemorrhage and skin necrosis were significantly reduced in the presence of alkaloids 1 and 2.
Resumo:
Snake venom proteins from the C-type lectin family have very distinct biological activities despite their highly conserved primary structure, which is homologous to the carbohydrate recognition region of true C-type lectins. We purified a lectin-like protein (BmLec) from Bothrops moojeni venom and investigated its effect on platelet aggregation, insulin secretion, antibacterial activity, and isolated kidney cells. The BmLec was purified using two chromatographic steps: affinity chromatography and reverse phase high performance liquid chromatography (HPLC). BmLec showed a dose-dependent platelet aggregation and significantly decreased the bacterial growth rate in approximately 15%. During scanning electron microscopy, the profile of Xanthomonas axonopodis pv. passiflorae treated with lectin disclosed a high vesiculation and membrane rupture. BmLec induced a strong and significant increase in insulin secretion at 2.8 and 16.7 mM glucose concentrations, and this effect was seen in the presence of EGTA in both experiments. BmLec (10 mu g/mL) increased the perfusion pressure, renal vascular resistance and urinary flow. The glomerular filtration rate and percentages of sodium, potassium and chloride tubular transport were reduced at 60 minutes of perfusion. Renal alterations caused by BmLec were completely inhibited by indomethacin in all evaluated parameters. In conclusion, the C-type lectin isolated from Bothrops moojeni affected platelet aggregation, insulin secretion, antibacterial activity and isolated kidney function.
Resumo:
We investigated the potential of secretory phospholipase A(2) (sPLA(2))-induced pancreatitis to promote abdominal hyperalgesia, as well as to depolarize sensory fibres in vitro using a grease-gap technique. Pancreatitis was induced by the injection of sPLA(2) from Crotalus durissus terrificus (sPLA(2) Cdt, 300 mu g kg(-1)) venom into the common bile duct of rats. Pancreatic inflammatory signs, serum amylase levels and abdominal hyperalgesia were evaluated in rats treated or not with SR140333, a tachykinin NK1 receptor antagonist. Injection of sPLA(2) Cdt caused pancreatic oedema formation and increased pancreatic neutrophil infiltration and serum amylase at 4 h, which returned to normality by 24 h, except for the neutrophil infiltration, which was still increased at this time point. Animals injected with sPLA(2) exhibited a lower withdrawal threshold to electronic von Frey stimulation in the upper abdominal region at 4 h, but not 24 h, post-injection when compared with saline-injected rats. Pre-treatment of animals with SR140333 significantly reduced the sPLA(2) Cdt-induced abdominal hyperalgesia, without affecting the other parameters. Neither sPLA(2) Cdt nor sPLA(2) from Naja mocambique mocambique venom depolarized capsaicin-sensitive sensory fibres from rat vagus nerve, but they decreased the propagated compound action potentials in both A and C fibres. These data show for the first time that NK1 receptors play an important role in the early abdominal hyperalgesia in a rat model of sPLA(2)-induced pancreatitis, suggesting that these receptors are of importance in the development of pain in the pancreatitis condition. We also provide evidence that sPLA(2)s do not directly depolarize sensory fibres in vitro. (C) 2011 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper was demonstrated that umbelliferone induces changes in structure and pharmacological activities of Bn IV, a lysine 49 secretory phospholipase A(2) (sPLA2) from Both tops neuwiedi. Incubation of Bn IV with umbelliferone virtually abolished platelet aggregation, edema, and myotoxicity induced by native Bn IV. The amino acid sequence of Bn IV showed high sequence similarities with other Lys49 sPLA2s from B. jararacussu (BthTx-I), B. pirajai (PrTx-I), and B. neuwiedi pauloensis (Bn SP6 and Bn SP7). This sPLA2 also has a highly conserved C-terminal amino acid sequence, which has been shown as important for the pharmacological activities of Lys49 sPLA2. Sequencing of Bn IV previously treated with umbelliferone revealed modification of S(1) and S(20). Fluorescent spectral analysis and circular dichroism (CD) studies showed that umbelliferone modified the secondary structure of this protein. Moreover, the pharmacological activity of Bn IV is driven by synergism of the C-terminal region with the a-helix motifs, which are involved in substrate binding of the Asp49 and Lys49 residues of 5PLA2 and have a direct effect on the Ca2+-independent membrane damage of some secretory snake venom PLA2. For Bn IV, these interactions are potentially important for triggering the pharmacological activity of this 5PLA2. (C) 2011 Elsevier Ltd. All rights reserved.