981 resultados para SOIL MICROBIAL COMMUNITY
Resumo:
The tensions produced in the wall of a rigid, thin-walled, liquid-filled sphere as it moves with an axisymmetric straining flow are examined. This problem has not been previously addressed. A generalised correlation for the maximum wall tension, expressed in dimensionless form as a Weber number (We), is developed in terms of the acceleration number (Ac) and Reynolds number (Re) of the straining flow. At low Reynolds number We is dominated by viscous forces, while inertial forces due to internal pressure gradients caused by sphere acceleration dominate at higher Re. The generalised correlation has been used to examine the case of a typical yeast cell (a thin-walled, liquid-filled sphere) passing through a typical high-pressure homogeniser (a straining-flow device). At 56 MPa homogenising pressure, a 6 mu m yeast cell experiences tensions in the inertially dominated regime (Re = 100). The correlation gives We = 0.206, corresponding to a maximum wall tension of 8 Nm(-1). This is equivalent to an applied compressive force of 150 mu N and compares favourably with the force required to break yeast cells under compressive micromanipulation (40-90 mu N). Inertial forces may therefore be an important and previously unrecognised. mechanism of microbial cell disruption during high-pressure homogenisation. Further work is required to examine the likelihood of cell deformation in the high-strain-rate short-residence-time environment of the homogeniser, and the effect that such deformation may have on the contribution of inertial forces to disruption. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In thin sections of resin-embedded samples of glutaraldehyde- and osmium tetroxide-fixed tissue from five genera of marine sponges, Stromatospongia, Astrosclera, Jaspis, Pseudoceratina and Axinyssa, cells of a bacteria-like symbiont microorganism which exhibit a membrane-bounded nuclear region encompassing the fibrillar nucleoid have been observed within the sponge mesohyl. The nuclear region in these cells is bounded by a single bilayer membrane, so that the cell cytoplasm is divided into two distinct regions. The cell wall consists of subunits analogous to those in walls of some Archaea. Cells of the sponge symbionts observed here are similar to those of the archaeal sponge symbiont Cenarchaeum symbiosum. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Background and Purpose-Few community-based studies have examined the long-term risk of recurrent stroke after an acute first-ever stroke. This study aimed to determine the absolute and relative risks of a first recurrent stroke over the first 5 years after a first-ever stroke and the predictors of such recurrence in a population-based series of people with first-ever stroke in Perth, Western Australia. Methods-Between February 1989 and August 1990, all people with a suspected acute stroke or transient ischemic attack of the brain who were resident in a geographically defined region of Perth, Western Australia, with a population of 138 708 people, were registered prospectively and assessed according to standardized diagnostic criteria. Patients were followed up prospectively at 4 months, 12 months, and 5 years after the index event. Results-Three hundred seventy patients with a first-ever stroke were registered, of whom 351 survived >2 days. Data were available for 98% of the cohort at 5 years, by which time 199 patients (58%) had died and 52 (15%) had experienced a recurrent stroke, 12 (23%) of which were fatal within 28 days. The 5-year cumulative risk of first recurrent stroke was 22.5% (95% confidence limits [CL], 16.8%, 28.1%). The risk of recurrent stroke was greatest in the first 6 months after stroke, at 8.8% (95% CL, 5.4%, 12.1%). After adjustment for age and sex, the prognostic factors for recurrent stroke were advanced, but not extreme, age (75 to 84 years) (hazard ratio [HR], 2.6; 95% CL, 1.1, 6.2), hemorrhagic index stroke (HR, 2.1; 95% CL, 0.98, 4.4), and diabetes mellitus (HR, 2.1; 95% CL, 0.95, 4.4). Conclusions-Approximately 1 in 6 survivors (15%) of a first-ever stroke experience a recurrent stroke over the next 5 years, of which 25% are fatal within 28 days. The pathological subtype of the recurrent stroke is the same as that of the index stroke in 88% of cases. The predictors of first recurrent stroke in this study were advanced age, hemorrhagic index stroke, and diabetes mellitus, but numbers of recurrent events were modest. Because the risk of recurrent stroke is highest (8.8%) in the first 6 months after stroke, strategies for secondary prevention should be initiated as soon as possible after the index event.
Resumo:
Nitrogen relations of natural and disturbed tropical plant communities in northern Australia (Kakadu National Park) were studied. Plant and soil N characteristics suggested that differences in N source utilisation occur at community and species level. Leaf and xylem sap N concentrations of plants in different communities were correlated with the availability of inorganic soil N (NH4+ and NO3-). In general, rates of leaf NO3- assimilation were low. Even in communities with a higher N status, including deciduous monsoon forest, disturbed wetland, and a revegetated mine waste rock dump, levels of leaf nitrate reductase, xylem and leaf NO3 levels were considerably lower than those that have been reported for eutrophic communities. Although NO3- assimilation in escarpment and eucalypt woodlands, and wetland, was generally low, within these communities there was a suite of species that exhibited a greater capacity for NO3- assimilation. These high-NO3- species were mainly annuals, resprouting herbs or deciduous trees that had leaves with high N contents. Ficus, a high-NO3- species, was associated with soil exhibiting higher rates of net mineralisation and net nitrification. Low-NO3- species were evergreen perennials with low leaf N concentrations. A third group of plants, which assimilated NO3- (albeit at lower rates than the high-NO3- species), and had high-N leaves, were leguminous species. Acacia species, common in woodlands, had the highest leaf N contents of all woody species. Acacia species appeared to have the greatest potential to utilise the entire spectrum of available N sources. This versatility in N source utilisation may be important in relation to their high tissue N status and comparatively short life cycle. Differences in N utilisation are discussed in the context of species life strategies and mycorrhizal associations.
Resumo:
A multisegment percolation system (MSPS) consisting of 25 individual collection wells was constructed to study the effects of localised soil heterogeneities on the transport of solutes in the vadose zone. In particular, this paper discusses the transport of water and nutrients (NO3-, Cl-, PO43-) through structurally stable, free-draining agricultural soil from Victoria, Australia. A solution of nutrients was irrigated onto the surface of a large undisturbed soil core over a 12-h period. This was followed by a continuous irrigation of distilled water at a fate which did not cause pending for a further 18 days. During this time, the volume of leachate and the concentration of nutrients in the leachate of each well were measured. Very significant variation in drainage patterns across a small spatial scale was observed. Leaching of nitrate-nitrogen and chloride from the core occurred two days after initial application. However, less than 1% of the total applied phosphate-phosphorus leached from the soil during the 18-day experiment, indicating strong adsorption. Our experiments indicate considerable heterogeneity in water flow patterns and solute leaching on a small spatial scale. These results have significant ramifications for modelling solute transport and predicting nutrient loadings on a larger scale.