999 resultados para SEMICONDUCTING OXIDE NANOBELTS
Resumo:
We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.
Resumo:
We demonstrate extremely stable and highly efficient organic light-emitting diodes (OLEDs) based on molybdenum oxide (MoO3) as a buffer layer on indium tin oxide (ITO). The significant features of MoO3 as a buffer layer are that the OLEDs show low operational voltage, high electroluminescence (EL) efficiency and good stability in a wide range of MoO3 thickness. A green OLED with structure of ITO/MoO3/N,N-'-di(naphthalene-1-yl)-N,N-'-diphenyl-benzidene (NPB)/NPB: tris(8-hydroxyquinoline) aluminum (Alq(3)):10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/Alq(3)/LiF/Al shows a long lifetime of over 50 000 h at 100 cd/m(2) initial luminance, and the power efficiency reaches 15 lm/W. The turn-on voltage is 2.4 V, and the operational voltage at 1000 cd/m(2) luminance is only 6.9 V. The significant enhancement of the EL performance is attributed to the improvement of hole injection and interface stability at anode.
Resumo:
Near infrared (NIR) light emitting diodes employing composites of an IR fluorescent dye, CdSe/CdScore/shell semiconductor quantum dots and poly( N-vinylcarbazole) (PVK) have been demonstrated. The device, with a configuration of indium-tin-oxide (ITO)//PEDOT:PSS//PVK:NIR Dye:CdSe/CdS//Al, had a turn-on voltage of 7 V, emitted the NIR light with a maximum at 890 nm and the irradiance intensity of 96 mu W. The electroluminescence efficiency of 0.02% was achieved at a current density of 13 mA cm(-2).
Resumo:
We report the electrical characterization of hybrid permeable-base transistors with tris(8-hydroxyquinoline) aluminum as emitter layer. These transistors were constructed presenting an Al/n-Si/Au/Alq(3)/V2O5/Al structure. We investigate the influence of the V2O5 layer thickness and demonstrate that these devices present high common-base and common-emitter current gain, and can be operated at very low driving voltages, lower than 1 V, in both, common-base and common-emitter modes.
Resumo:
A binary catalyst system of a chiral (R,R)-SalenCo(III)(2,4-dinitrophenoxy) (salen = N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-diphenylethylenediimine) in conjunction with (4-dimethylamino)pyridine (DMAP) was developed to generate the copolymerization of carbon dioxide (CO2) and racemic propylene oxide (rac-PO). The influence of the molar ratio of catalyst components, the operating temperature, and reaction pressure on the yield as well as the molecular weight of polycarbonate were systematically investigated. High yield of turnover frequency (TOF) 501.2 h(-1) and high molecular weight of 70,400 were achieved at an appropriate combination of all variables. The structures of as-prepared products were characterized by the IR, H-1 NMR, C-13 NMR measurements. The linear carbonate linkage, highly regionselectivity and almost 100% carbonate content of the resulting polycarbonate were obtained with the help of these effective catalyst systems under facile conditions.
Resumo:
A series of Eu3+-doped ZnO films have been prepared by a sol-gel method. These films were characterized by X-ray diffraction (XRD) and photoluminecent spectra (PL). Effects of synthetic parameters, such as annealing atmosphere, temperature and concentration of doped ions, on the highly oriented crystal growth were studied in detail. The crystalline structures of films annealed in vacuum have a wurtzite symmetry with highly c-axis orientation. A characteristic D-5(0) -> F-7(J)(J = 1, 2, 3 and 4) red emission is observed due to energy transfer from the ZnO host to the doped Eu3+ in the c-oriented ZnO films.
Resumo:
Poly( ethylene oxide)-b-poly(N, N-dimethylacrylamide) (PEO-b-PDMA) was synthesized by successive atom transfer radical polymerization (ATRP) of N, N-dimethylacrylamide (DMA) monomer using PEO-Br macro initiators as initiator, CuBr and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetra decane (Me-6[14] aneN(4)) as catalyst and ligand. PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide. GPC and H-1 NMR studies show that the plot of ln([DMA](0)/[ DMA]) against the reaction time is linear, and the molecular weight of the resulting PDMA increased linearly with the conversion. Within 3 h, the polymerization can reach almost 60% of conversion. PEO-b-PDMA copolymer with low polydispersity index (M-w/M-n approximate to 1.1) is obtained. Self-assembly of PEO-b-PDMA in selective solvents is also studied. It could self-assemble into micelles in methanol/acetone (1/10, v/v) solution. TEM analyses of the PEO-b-PDMA micelles with narrow size distribution revealed that their size and shape depend much on the copolymer composition.
Resumo:
Solid solutions of Ce1-xNdxO2-x/2 (0.05 <= x <= 0.2) and (Ce1-xNdx)(0.95)MO0.05O2-delta (0.05 <= x <= 0.2) have been synthesized by a modified sol-gel method. Both materials have very low content of SiO2 (similar to 27 ppm). Their structures and ionic conductivities were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and electrochemical impedance spectroscopy (M). The XRD patterns indicate that these materials are single phases with a cubic fluorite structure. The powders calcined at 300 degrees C with a crystal size of 5.7 nm have good sinterability, and the relative density could reach above 96% after being sintered at 1450 degrees C. With the addition Of MoO3, the sintering temperature could be decreased to 1250 degrees C. Impedance spectroscopy measurement in the temperature range of 250-800 degrees C indicates that a sharp increase of conductivity is observed when a small amount of Nd2O3 is added into ceria, of which Ce0.85Nd0.15O1.925 (15NDC) shows the highest conductivity. With the addition of a small amount Of MoO3, the grain boundary conductivity of 15NDC at 600 degrees C increases from 2.56 S m(-1) to 5.62 S m(-1).
Resumo:
The Ce6-xYxMoO15-delta solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15-delta ranging from 5.9 X 10(-5)(S cm(-1)) at 300 degrees C to 1.3 X 10(-2)(S cm(-1)) at 650 degrees C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 degrees C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.
Resumo:
We reported the interesting finding that large scale uniform poly(o-phenylenediamine) nanobelts with several hundred micrometers in length, several hundred nanometers in width, and several ten nanometers in height can be rapidly yielded from an o-phenylenediamine-HAuCl4 aqueous solution without the additional introduction of other templates or surfactants at room temperature.
Resumo:
In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40 s. Under the optimized conditions, the linear range was obtained from 5 to 100 muM with correlation coefficient of 0.998. The limit of detection (LOD) of 3.1 muM was obtained for lincomycin in the standard solution. We also applied this method to analyzing lincomycin in the urine matrix. The limit of detection of 9.0 muM was obtained. This method can determine lincomycin in the urine sample without pretreatment, which demonstrated that it is a promising method of detection of lincomycin in clinical and pharmaceutical area.