986 resultados para SEED-GERMINATION
Resumo:
The loss of seed-rich wintering habitats has been a major contributory cause of farmland bird population declines in western Europe. Agricultural grasslands are particularly poor winter foraging habitats for granivorous birds, which have declined most in the pastoral farming regions of western Britain. We describe an experiment to test the utility of fertile ryegrass (Lolium) swards as a potentially rich source of winter seed for declining farmland birds. Four patches of final-cut grass silage were allowed to set seed and were left in situ overwinter. Half of each patch was lightly aftermath grazed in an attempt to increase the accessibility of the seed to foraging birds and reduce the perceived predation risk. Large numbers of yellowhammers (Emberiza citrinella) and reed buntings (E. schoeniclus) foraged on the seeded plots throughout the winter. They preferred to forage on ungrazed seeded plots, where the accumulation of senescent foliage resulted in a 14% average loss in silage yield in the following season. However, seed produced on the plots also led to sward regeneration, increasing subsequent yields on some plots. The technique offers clear benefits as a potential future agri-environment measure for declining granivorous birds, with wide applicability, but requires further development to minimise sward damage and costs to the farmer. Autumn grazing should reduce sward damage, but at the cost of reduced usage by buntings. Using the technique just prior to reseeding would be one way of avoiding any costs of sward damage.
Resumo:
Seed quality may be compromised if seeds are harvested before natural dispersal (shedding). It has been shown previously that slow or delayed drying can increase potential quality compared with immediate rapid drying. This study set out to investigate whether or not there is a critical moisture content, below which drying terminates maturation events for seeds harvested after mass maturity but before dispersal. Seeds of foxglove (Digitalis purpurea) in the post-abscission pre-dispersal phase were held at between 15 and 95 % RH for 4 or 8 d, with or without re-hydration to 95 % RH for a further 4 d, before drying to equilibrium at 15 % RH. In addition, dry seeds were primed for 48 h at -1 MPa. Subsequent seed longevity was assessed at 60 % RH and 45 degrees C. Rate of germination and longevity were improved by holding seeds at a wide range of humidities after harvest. Longevity was further improved by re-hydration at 95 % RH. Priming improved the longevity of the seeds dried immediately after harvest, but not of those first held at 95 % RH for 8 d prior to drying. Maturation continued ex planta in these post-abscission, pre-dispersal seeds of D. purpurea dried at 15-80 % RH at a rate correlated positively with RH (cf. ageing of mature seeds). Subsequent re-hydration at 95 % RH enabled a further improvement in quality. Priming seeds initially stored air-dry for 3 months also allowed maturation events to resume. However, once individual seeds within the population had reached maximum longevity, priming had a negative impact on their subsequent survival.
Resumo:
This paper considers the process of Participatory Varietal Selection (PVS) and presents approaches and ideas based on PVS activities conducted on upland rice throughout Ghana between 1997 and 2003. In particular the role of informal seed systems in PVS is investigated and implications for PVS design are identified. PVS programmes were conducted in two main agroecological zones, Forest and Savannah, with 1,578 and 1,143 mm of annual rainfall, respectively, and between 40 and 100 varieties tested at each site. In the Savannah zone IR12979-24-1 was officially released and in the Forest zone IDSA 85 was widely accepted by farmers. Two surveys were conducted in an area of the Forest zone to study mechanisms of spread. Here small amounts (1-2 kg) of seed of selected varieties had been given to 94 farmers. In 2002, 37% of 2,289 farmers in communities surveyed had already grown a PVS variety and had obtained seed via informal mechanisms from other farmers, i.e. through gift, exchange or purchase. A modified approach for PVS is presented which enables important issues identified in the paper to be accommodated. These issues include: utilising existing seed spread mechanisms; facilitating formal release of acceptable varieties; assessing post-harvest traits, and; the need for PVS to be an ongoing and sustainable process.
Resumo:
The impact of environment on the germination biology of Striga hermonthica was studied in the laboratory by conditioning seeds at various water potentials and urea concentrations at 17.5 to 37.5°C for up to 133 days. The experimental results presented in this research are related to the effects of temperature, water potential and urea nitrogen concentration during conditioning on subsequent germination percentage of S. hermonthica. Maximum germination in S. hermonthica seeds was observed at conditioning temperatures of 20 to 25°C within the range investigated of 17.5 to 37.5°C. Water stress and also urea during conditioning suppressed maximum germination. However, the conditioning temperature ranges at which maximum germination percentages occur vary with water stress and also urea concentration. In the presence of a high concentration of urea (3.16 mM), temperatures required for maximum germination narrowed to between 17.5 to 20°C. The optimum period of conditioning decreased with increase in water stress and also urea concentration similar to previous reports. The implications of these findings on Striga hermonthica field infestations have been investigated and being reported in another paper. Germination was greatly suppressed by conditioning environments including 3.16 mM urea and at 37.5°C. At the high concentration of 3.16 mM, temperatures required for maximum germination narrowed to between 17.5 and 20°C. Optimum conditioning period decreased with water stress and with increase in urea concentration.
Resumo:
Since the middle of the last century agricultural intensification within Europe has led to a drastic decline in the extent of botanically diverse grasslands. Whilst measures to enhance the diversity of agriculturally-improved grasslands are in place, success has often been limited. One of the primary factors limiting success is the paucity of sources of propagules of desirable species in the surrounding landscape. The restoration of two contrasting grassland types lowland hay meadow and chalk grassland) was examined using a replicated block experiment to assess the effectiveness of two methods of seed application (hay strewing and brush harvesting) and two methods of pre-treatment disturbance (power harrowing and turf stripping). The resulting changes in botanical composition were monitored for 4 years. Seed addition by both methods resulted in significant temporal trends in plant species composition and increases in plant species richness, which were further enhanced by disturbance. Power harrowing increased the effectiveness of the seed addition treatments at the lowland hay meadow site. At the chalk grassland site a more severe disturbance created by turf stripping was used and shown to be preferable. Whilst both hay strewing and brush harvesting increased plant species richness, hay strewing was more effective at creating a sward similar to that of the donor site. Soil disturbance and seed application rate at the recipient site and timing of the hay cut at the donor site are all factors to be considered prior to the commencement of restoration management. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background and Aims The negative logarithmic relationship between orthodox seed longevity and moisture content in hermetic storage is subject to a low-moisture-content limit (m(c)), but is m(c) affected by temperature? Methods Red clover (Trifolium pratense) and alfalfa (Medicago sativa) seeds were stored hermetically at 12 moisture contents (2-15 %) and five temperatures (-20, 30, 40, 50 and 65 degrees C) for up to 14.5 years, and loss in viability was estimated. Key Results Viability did not change during 14.5 years hermetic storage at -20 degrees C with moisture contents from 2.2 to 14.9 % for red clover, or 2.0 to 12.0 % for alfalfa. Negative logarithmic relationships between longevity and moisture contents > m(c) were detected at 30-65 degrees C, with discontinuities at low moisture contents; m(c) varied between 4.0 and 5.4 % (red clover) or 4.2 and 5.5 % (alfalfa), depending upon storage temperature. Within the ranges investigated, a reduction in moisture content below m(c) at any one temperature had no effect on longevity. Estimates of m(c) were greater the cooler the temperature, the relationship (P < 0.01) being curvilinear. Above m(c), the estimates of C-H and C-Q (i.e. the temperature term of the seed viability equation) did not differ (P > 0.10) between species, whereas those of K-E and C-W did (P < 0.001). Conclusions The low-moisture-content limit to negative logarithmic relationships between seed longevity and moisture content in hermetic storage increased the cooler the storage temperature, by approx. 1.5 % over 35 degrees C (4.0-4.2 % at 65 degrees C to 5.4-5.5 % at 30-40 degrees C) in these species. Further reduction in moisture content was not damaging. The variation in m(c) implies greater sensitivity of longevity to temperature above, compared with below, m(c). This was confirmed (P < 0.005).