985 resultados para Ryerson, Egerton, 1803-1882.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of train planning or scheduling for large, busy, complex train stations, which are common in Europe and elsewhere, though not in North America. We develop the constraints and objectives for this problem, but these are too computationally complex to solve by standard combinatorial search or integer programming methods. Also, the problem is somewhat political in nature, that is, it does not have a clear objective function because it involves multiple train operators with conflicting interests. We therefore develop scheduling heuristics analogous to those successfully adopted by train planners using ''manual'' methods. We tested the model and algorithms by applying to a typical large station that exhibits most of the complexities found in practice. The results compare well with those found by traditional methods, and take account of cost and preference trade-offs not handled by those methods. With successive refinements, the algorithm eventually took only a few seconds to run, the time depending on the version of the algorithm and the scheduling problem. The scheduling models and algorithms developed and tested here can be used on their own, or as key components for a more general system for train scheduling for a rail line or network.Train scheduling for a busy station includes ensuring that there are no conflicts between several hundred trains per day going in and out of the station on intersecting paths from multiple in-lines and out-lines to multiple platforms, while ensuring that each train is allowed at least its minimum required headways, dwell time, turnaround time and trip time. This has to be done while minimizing (costs of) deviations from desired times, platforms or lines, allowing for conflicts due to through-platforms, dead-end platforms, multiple sub-platforms, and possible constraints due to infrastructure, safety or business policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a model commonly used in dynamic traffic assignment the link travel time for a vehicle entering a link at time t is taken as a function of the number of vehicles on the link at time t. In an alternative recently introduced model, the travel time for a vehicle entering a link at time t is taken as a function of an estimate of the flow in the immediate neighbourhood of the vehicle, averaged over the time the vehicle is traversing the link. Here we compare the solutions obtained from these two models when applied to various inflow profiles. We also divide the link into segments, apply each model sequentially to the segments and again compare the results. As the number of segments is increased, the discretisation refined to the continuous limit, the solutions from the two models converge to the same solution, which is the solution of the Lighthill, Whitham, Richards (LWR) model for traffic flow. We illustrate the results for different travel time functions and patterns of inflows to the link. In the numerical examples the solutions from the second of the two models are closer to the limit solutions. We also show that the models converge even when the link segments are not homogeneous, and introduce a correction scheme in the second model to compensate for an approximation error, hence improving the approximation to the LWR model.