989 resultados para Routine activity
Resumo:
Ligand-induced stabilization of G-quadruplex structures formed by the human telomeric DNA is an active area of research. The compounds which stabilize the G-quadruplexes often lead to telomerase inhibition. Herein we present the results of interaction of new monomeric and dimeric ligands having 1,3-phenylene-bis(piperazinyl benzimidazole) unit with G-quadruplex DNA (G4DNA) formed by human telomeric repeat d(G(3)T(2)A)(3)G(3)]. These ligands efficiently stabilize the preformed G4DNA in the presence of 100 mM monovalent alkali metal ions. Also, the G4DNA formed in the presence of low concentrations of ligands in 100 mM K+ adopts a highly stable parallel-stranded conformation. The G-quadruplexes formed in the presence of the dimeric compound are more stable than that induced by the corresponding monomeric counterpart. The dimeric ligands having oligo-oxyethylene spacers provide much higher stability to the preformed G4DNA and also exert significantly higher telomerase inhibition activity. Computational aspects have also been discussed.
Resumo:
Lanthanide(III) complexes Ln(R-tpy)(acac)(NO3)(2)] (Ln = La(III) in 1, 2; Gd(III) in 4, 5) and Ln(py-tpy)(sacac)(NO3)(2)] (Ln = La(III), Gd(III), 6), where R-tpy is 4'-phenyl-2,2':6',2 `'-terpyridine (ph-tpy in 1, 4), 4'-(1-pyrenyl)-2,2':6',2 `'-terpyridine (py-tpy in 2, 3, 5 and 6), acac is acetylacetonate and sacac is 4-hydroxy-6-{4-(beta-D-glucopyranoside)oxy]phenyl}hex-3,5-dien-2-on ate, were prepared to study their DNA photocleavage activity and photocytotoxicity. Complexes La(ph-tpy)(acac)(E-tOH)(NO3)(2)] (1a) and Gd(ph-tpy)(acac)(NO3)(2)] (4) were characterized by X-ray crystallography. The 1:1 electrolytic complexes bind to calf thymus DNA. The py-tpy complexes cleave pUC19 DNA and exhibit remarkable photocytotoxicity in HeLa cells in UV-A light of 365 nm with apoptotic cell death (IC50: similar to 40 nM in light, >200 mu M in dark). Confocal microscopy using HeLa cells reveal primarily cytosolic localization of the complexes. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Four new 2-oxo-1,2-dihydrobenzoh]quinoline-3-carbaldehyde N-substituted thiosemicarbazone ligands (H-2-LR, where R = H, Me, Et or Ph) and their corresponding new cobalt(III) complexes have been synthesized and characterized. The structures of the complexes 2 and 3 were determined by single crystal X-ray diffraction analysis. The interactions of the new complexes with DNA were investigated by absorption, emission and viscosity studies which indicated that the complexes bind to DNA via intercalation. Antioxidant studies of the new complexes showed that the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of complexes 1-4 against A549 cell line was assayed which showed higher cytotoxic activity with lower IC50 values indicating their efficiency in killing the cancer cells even at very low concentrations. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The last few decades have witnessed application of graph theory and topological indices derived from molecular graph in structure-activity analysis. Such applications are based on regression and various multivariate analyses. Most of the topological indices are computed for the whole molecule and used as descriptors for explaining properties/activities of chemical compounds. However, some substructural descriptors in the form of topological distance based vertex indices have been found to be useful in identifying activity related substructures and in predicting pharmacological and toxicological activities of bioactive compounds. Another important aspect of drug discovery e. g. designing novel pharmaceutical candidates could also be done from the distance distribution associated with such vertex indices. In this article, we will review the development and applications of this approach both in activity prediction as well as in designing novel compounds.
Resumo:
The reaction of the benzoylhydrazone of 2-hydroxybenzaldehyde (H2L) with MoO2(acac)(2)] proceeds smoothly in refluxing ethanol to afford an orange complex MoO2L(C2H5OH)] (1). The substrate binding capacity of 1 has been demonstrated by the formation and isolation of two mononuclear MoO2L(Q)] {where Q = imidazole (2a) and 1-methylimidazole (2b)} and one dinuclear (MoO2L)(2)(Q)] {Q = 4,4'-bipyridine (3)} mixed-ligand oxomolybdenum complex. All the complexes have been characterized by elemental analysis, magnetic and spectroscopic (IR, UV-Vis and NMR) measurements. The molecular structures of all the oxomolybdenum(VI) complexes (1, 2a, 2b and 3) have been determined by X-ray crystallography. In each complex, the dianionic planar ligand is coordinated to the metal centre via one enolate oxygen, one phenolate oxygen and an azomethine nitrogen atom. The complexes have been screened for their antibacterial activity against Escherichia coli, Bacillus and Pseudomonas aeruginosa. The minimum inhibitory concentration of these complexes and their antibacterial activity indicates that compounds 2a and 2b are potential lead molecules for drug designing. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.
Resumo:
beta-lactoglobulin is a rich source of bioactive peptides. The LC-MS separated tryptic peptides of buffalo colostrum beta-lactoglobulin (BLG-col) were computed based on MS-MS fragmentation for de novo sequencing. Among the selected peptides (P1-P8), a variant was detected with methionine at position 74 instead of glutamate. The sequences of two peptides were identical to hypocholesterolemic peptides whereas the remaining peptides were in accordance with buffalo milk beta-lactoglobulin. Comparative sequence analysis of BLG-col to milk beta-lactoglobulin was carried out using CLUSTALW2 and a molecular model for BLG-col was constructed (PMDB ID-PM0076812). The synthesized variant pentapeptide (IIAMK, m/z-576 Da) was found to inhibit angiotensin I-converting enzyme (ACE) with an IC50 of 498 +/- 2 mu M, which was rationalized through docking simulations using Molgrow virtual docker. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
The solubilities of various solid pollutants in supercritical carbon dioxide were investigated. The intermolecular interactions play a significant role in determining the solubilities of solids in supercritical carbon dioxide. A new model equation was derived by using the concepts of association and activity coefficient model to correlate the solubilities of solids. The model equation combines the association and Wilson activity coefficient models and includes the interaction potentials between the molecules, which are useful in understanding the behavior of the solid solutes in SCCO2. The new model equation involves five adjustable parameters to correlate the solubilities of solids by incorporating the interactions between the molecules. The equation correlated 75 solid systems with an average AARD of around 9%, which was better than the correlations obtained from standard models such as Mendez Santiago-Teja (MT) model and association model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PIP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PIP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 mu M. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 (E)-2-thioxo-5-({3-(trifluoromethyl)phenyl]furan-2-yl}methylene) thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 +/- 0.3 mu M. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC50) of 1.2 +/- 0.2 mu M and a minimal inhibitory concentration of 3 mu M. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC50 value of 18.1 +/- 0.2,mu M (similar to 15 x IC50 of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.
Resumo:
To study the efficacy of ethanolic extract of B. monosperma bark in cafeteria and atherogenic diet fed rats and monosodium glutamate (MSG) obese rats, different doses (200, 400 and 800 mg/kg) of ethanolic extract of B. monosperma bark showed dose dependent decrease in body weight, daily food intake, glucose, lipids, internal organs' weight and fat pad weight in cafeteria and atherogenic diet fed rats and monosodium glutamate obese rats. The results suggested that B. monosperma has significant anti-obese activity.
Resumo:
Densely packed nanoparticles distributed in a stable and robust thin film is a highly preferred system for utilizing the various applications of nanoparticles. Here, we report covalent bond mediated layer-by-layer (LbL) self-assembled thin films of nanoparticles embedded in polymer membrane. Polymer with complementary functional group is utilized for fabrication of thin film via covalent bonding. UV-visible spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to monitor the growth of LbL thin film. Subsequently, the composite thin film is used for catalysis of an organic electron transfer reaction of p-nitrophenol to p-aminophenol by sodium borohydride. The catalytic activity of these composite films is assayed multiple times, proving its applicability as a catalyst. The kinetic data obtained by monitoring reduction of p-nitrophenol suggest that the reaction rates are directly related to the sizes of the nanoparticle and porosity of the membrane.
Resumo:
A facile method of solution combustion was used to synthesize a new solid solution Bi2Ce2O7. The structure was determined from powder X-ray diffraction (PXRD) and found to crystallize in the space group Fm (3) over barm with cell parameter a = 5.46936(9) angstrom. The particle sizes varied from 5 to 6 nm. The degradation of cationic dye malachite green (MG) was investigated under solar radiation as the band gap of the material is 2.34 eV.
Resumo:
Oxidovanadium(IV) complexes VO(pyphen)(L)]Cl2 (1, 2) and VO(pydppz)(L)]Cl2 (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4) are prepared and characterized. The crystal structure of VO(pyphen)(phen)](ClO4)2 (1a) shows a six-coordinate VN5O geometry with a VO2+ moiety in which the polypyridyl ligand binds in a meridional fashion and the phen ligand displays a chelating binding mode with an N-donor site trans to the oxidovanadyl group. The complexes show a dd band within 720-750 nm in DMF. The one-electron paramagnetic complexes are 1:2 electrolytes in DMF. The complexes exhibit an irreversible VIV/VIII redox response near -0.85 V vs. SCE in DMF/0.1 M TBAP. The complexes bind to calf thymus (ct) DNA giving Kb values within 7.5 x 104 to 1.1 x 106 M1. The complexes show poor chemical nuclease activity in the dark and exhibit significant DNA-photocleaving activity in near-IR light of 705 and 785 nm forming .OH radicals. Complexes 2-4 show remarkable photocytotoxicity in HeLa cancer cells. FACS analysis of the HeLa cells treated with complex 4 shows cell death as highlighted by the sub G1 peak. Propidium iodide staining data indicate apoptosis as the primary mode of cell death.