977 resultados para Rossini, Gioacchino, 1792-1868.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Himalayas, large area is covered by glaciers, seasonal snow and changes in its extent can influence availability of water in the Himalayan Rivers. In this paper, changes in glacial extent, glacial mass balance and seasonal snow cover have been discussed. Field and satellite based investigations suggest, most of the Himalayan glaciers are retreating though the rate of retreat is varying from glacier to glacier, ranging from few meters to almost 50 meters per year, depending upon the numerous glacial, terrain and meteorological parameters. Retreat was estimated for 1868 glaciers in eleven basins distributed across the Indian Himalaya since 1962 to 2001/02. Estimates show an overall reduction in glacier area from 6332 to 5329 sq km, an overall deglaciation of 16 percent.Snow line at the end of ablation season on the Chhota Shigri glacier suggests a change in altitude from 4900 to 5200 m from late 1970’s to the present. Seasonal snow cover monitoring of the Himalaya has shown large amounts of snow cover depletion in early part of winter, i.e. from October to December. For many basins located in lower altitude and in south of Pir Panjal range, snow ablation was observed through out the winter season. In addition, average stream runoff of the Baspa basin during the month of December shows an increase by 75 per cent. This combination of glacial retreat, negative mass balance, early melting of seasonal snow cover and winter time increase in stream runoff suggest an influence of climate change on the Himalayan cryosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.