998 resultados para Ross Ice Shelf
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
During the "Polarstern"-expeditions ARK-IX/4 (1993) and ARK-XI/1 (1995), organised by the Alfred Wegener Institute (AWI), acoustic subbottom profiles (Parasound) have been collected in the Laptev Sea Shelf, Siberia. These data have been interpreted as an indicator of ice scours frequency and off-shore permafrost patterns. An additional acoustic profile data-base was available by the results of the expedition of the Federal Institute for Geosciences and Natural Resources (BGR) of the year 1994. The area of the expedition was located closer to the shelf, therefore supports a better understanding of ice scours frequency in shallower marine environments. The data-file consists of a 2930 km Parasound-traverse and has been subdivided into 586 working profiles. They are characterised by their location, number of ice scours, interpreted patterns of reflection and their extension and morphology. The data have been evaluated statistically and graphically and were presented in a map. Different patterns of sea floor reflection were established by different environments, outer influences (e.g. size of the icebergs, direction of the drift of icebergs) and the climatic history of the region. In the north-westerly region of the Laptev Sea at the continental slope of Severnaya Zemlya the sea floor in shallower depths has been ploughed intensely by recent icebergs. In some regions (40-60m), as an effect of intensely ploughing, the sea floor is hardly defined in acoustic profiles come along with relocation of marine deposits. Glacial diamiet deposits prevented the development of deep scours. Up to 355m deeper scours result from lower sea levels. The marginal north-easterly region of the Laptev Sea is characterised exclusively by this type of scour. Morphology and depth of these scours can be compared with those of the westerly Vilkitsky-Street so that similar conditions of development may be expected. Both, the north-easterly Laptev Sea and the Vilkitsky-Street, are not dominated by patterns ofrecent icebergs. In contrary the shelf-regions north-easterly ofthe Taimyr peninsula and north-westerly of the New Siberian Islands have been modified evidently by recent icebergs, which drifted with prevalent currents anticlockwise along the shelf edge of the Laptev Sea and cause the deepest scours of the whole region. The off-shore permafrost at the inner shelf regions has an important influence on the scours intensity. The permafrost layer can be recognised by the maximum depth of ice scours. It is represented by a Parasound reflector that can be made up for distances. The age of the ice scours cannot be determined absolutely by Parasound data but a relative order can be estimated whenever two scours are situated close to each other. When the Parasound-traverse ofthe expedition ARK-IX/4 (1993) (77°24'N 133°30'E-77°30'N 133°40'E) was repeated partially in expedition ARK-XI/l (1995) the ice scours of 1993 remained unchanged and uneroded and no new ice scours had been detected. It can be concluded that scours persist for a long time in the Laptev Sea, though after all with an average of 3 ice scours per kilometer there are not many at all in the Laptev Sea.
Resumo:
Abstract: The history of grounded ice-sheet extent on the southern Weddell Sea shelf during the Last Glacial Maximum (LGM) and the timing of post-LGM ice-sheet retreat are poorly constrained. Several glaciological models reconstructed widespread grounding and major thickening of the Antarctic Ice Sheet in the Weddell Sea sector at the LGM. In contrast, recently published onshore data and modelling results concluded only very limited LGM-thickening of glaciers and ice streams feeding into the modern Filchner and Ronne ice shelves. These studies concluded that during the LGM ice shelves rather than grounded ice covered the Filchner and Ronne troughs, two deep palaeo-ice stream troughs eroded into the southern Weddell Sea shelf. Here we review previously published and unpublished marine geophysical and geological data from the southern Weddell Sea shelf. The stratigraphy and geometry of reflectors in acoustic sub-bottom profiles are similar to those from other West Antarctic palaeo-ice stream troughs, where grounded ice had advanced to the shelf break at the LGM. Numerous cores from the southern Weddell Sea shelf recovered sequences with properties typical for subglacially deposited tills or subglacially compacted sediments. These data sets give evidence that grounded ice had advanced across the shelf during the past, thereby grounding in even the deepest parts of the Filchner and Ronne troughs. Radiocarbon dates from glaciomarine sediments overlying the subglacial deposits are limited, but indicate that the ice grounding occurred at the LGM and that ice retreat started before ~15.1 corrected 14C kyrs before present (BP) on the outer shelf and before ~7.7 corrected 14C kyrs BP on the inner shelf, which is broadly synchronous with ice retreat in other Antarctic sectors. The apparent mismatch between the ice-sheet reconstructions from marine and terrestrial data can be attributed to ice streams with very low surface profiles (similar to those of "ice plains") that had advanced through Filchner Trough and Ronne Trough at the LGM. Considering the global sea-level lowstand of ~130 metres below present, a low surface slope of the expanded LGM-ice sheet in the southern Weddell Sea can reconcile grounding-line advance to the shelf break with limited thickening of glaciers and ice streams in the hinterland. This scenario implies that ice-sheet growth in the Weddell Sea sector during the LGM and ice-sheet drawdown throughout the last deglaciation could only have made minor contributions to the major global sea-level fluctuations during these times.
Resumo:
Geologie cores on two profiles oriented normaly to the continental shelf and slope, have been investigated to reconstruct the Quaternary sedimentary history of the southeast continental border of South Orkney (NW Weddell Sea). The sediments were described macroscopically and their fabric investigated by use of X-radiographs. Laboratory work comprised detailed grain-size analysis, determination of the watercontent, carbonate, organic carbon and sand fraction.composition. Stable oxygen and carbon isotopes have been measured On planktonic foraminifera. Palaeomagnetism, analysis of 230Th-content and detailed comparison of the lithlogic Parameters with the oxygen isotope stages (Martinson curve) were used for stratigraphic classification of the sediments. The sediment cores from the continental slope comprise a maximum age of 300,000 years B. P.. Bottom currents, ice rafting and biogenic input are the main sources of sediment. Based on lithologic parameters a distinction between glacial and interglacial facies is possible. Silty clays without microfossils and few bioturbation characterise the sediments of the glacial facies. Only small amounts of icerafted debris can be recognized. This type of sediment was accumulated during times of lower sea-level and drastically reduced rate of bottom water production. Based on grain-size distribution, bottom current velocities of 0.01 cmls were calculated. Thick sea-ice coverage reduced biogenic production in the surface water, and as consequence benthic communities were depleted. Because of the reduced benthic life, sediments are only slithly bioturbated. At the beginning of the interglacial Stage, the sea-level rised rapidly, and calving rate of icebergs, combined with input of ice-rafted material, increased considerably. Sediments of this transition facies are silty cliiys with a high proportion of coarse ice-rafted debris, but without microfossils. With the onset of bottom water production in connection with shelf ice water, sediments of interglacial facies were formed. They consist of silty clays to clayey silts with considerable content of sand and gravel. Sediments are strongly bioturbated. Based On the sediment caracteristics, current velocities of the bottom water were calculated to be of 0.96 cmls for interglacials. At the southern slope of a NW/SE-striking ridge, bottom water current is channelized, resulting in a drastic increase of current velocities. Current velocities up to 7.5 cm/s lead to formation of residual sediments. While the continental slope has predominantly fine sediments, the South Orkney shelf are mainly sandy silts and silty sands with a high proportion of gravel. These sediments were formed dominantly by ice-rafting during Brunhes- and Matuyama-Epoch. Currents removed the fine fraction of the sediments. Based on microfossil contents it was not possible to differentiate sediments from glacial to interglacial. In the upper Parts of the cores graded sequences truncated by erosion were observed. These sequences were formed during Brunhes-Epoch by strong currents with velocities decreasing periodically from about 7.5 cm/s to about 1 cm/s. Sediments with a high proportion of siliceous microfossils but barren of foraminifera compose the lower part of the shelf cores. These sediments have formed during the warmer Matuyama-Epoch.
Resumo:
Periods of enhanced terrigenous input to the ocean's basins of the North Atlantic have been reported for the last glacial period. We present a set of new sediment cores recovered from the Sophia Basin north of Svalbard which exhibit wide spread IRD layers reflecting enhanced terrigenous input throughout the last ~200 kyr. BP. Their consistent stratigraphic position, sedimentological character, high sedimentation rate and geochemical characteristic point to synchronously deposited layers which we name terrigenous input events (TIEs). Due to their higher densities, they generate excellent reflectors for sediment penetrating acoustic devices and prominent acoustic layers in the imagery of sedimentary structures. Therefore TIEs can be used for regional acoustic stratigraphy. Each of the events can be linked to major glacial activity on Svalbard. However, the Early Weichselian glaciation is not recorded as a TIE and, in agreement with other work, might not have occurred on Svalbard as a major glacial advance to the shelf break. Non-synchronous timing of western and northern sources on Svalbard points against sea-level induced iceberg discharge events.
Resumo:
The Antarctic Pack Ice Seal (APIS) Program was initiated in 1994 to estimate the abundance of four species of Antarctic phocids: the crabeater seal Lobodon carcinophaga, Weddell seal Leptonychotes weddellii, Ross seal Ommatophoca rossii and leopard seal Hydrurga leptonyx and to identify ecological relationships and habitat use patterns. The Atlantic sector of the Southern Ocean (the eastern sector of the Weddell Sea) was surveyed by research teams from Germany, Norway and South Africa using a range of aerial methods over five austral summers between 1996-1997 and 2000-2001. We used these observations to model densities of seals in the area, taking into account haul-out probabilities, survey-specific sighting probabilities and covariates derived from satellite-based ice concentrations and bathymetry. These models predicted the total abundance over the area bounded by the surveys (30°W and 10°E). In this sector of the coast, we estimated seal abundances of: 514 (95 % CI 337-886) x 10**3 crabeater seals, 60.0 (43.2-94.4) x 10**3 Weddell seals and 13.2 (5.50-39.7) x 10**3 leopard seals. The crabeater seal densities, approximately 14,000 seals per degree longitude, are similar to estimates obtained by surveys in the Pacific and Indian sectors by other APIS researchers. Very few Ross seals were observed (24 total), leading to a conservative estimate of 830 (119-2894) individuals over the study area. These results provide an important baseline against which to compare future changes in seal distribution and abundance.
Resumo:
Foraminiferal analysis of Miocene to recent strata of the Northwest Shelf of Australia is used to chart West Pacific Warm Pool (WPWP) influence. The assemblage is typified by "larger" foraminifera with ingressions of the Indo-Pacific "smaller" taxa Asterorotalia and Pseudorotalia at around 4 Ma and from 1.6 to 0.8 Ma. A review of recent and fossil biogeography of these taxa suggests their stratigraphic distribution can be used to document WPWP evolution. From 10 to 4.4 Ma a lack of biogeographic connectivity between the Pacific and Indian Ocean suggests Indonesian Throughflow (ITF) restriction. During this period, the collision of Australia and Asia trapped warmer waters in the Pacific, creating a central WPWP biogeographic province from the equator to 26°N. By 3 Ma Indo-Pacific species migrated to Japan with the initiation of the "modern" Kuroshio Current coinciding with the intensification of the North Pacific Gyre and Northern Hemisphere ice sheet expansion. Indo-Pacific taxa migrated to the northwest Australia from 4.4 to 4 Ma possibly because of limited ITF. The absence of Indo-Pacific taxa in northwest Australia indicates possible ITF restriction from 4 to 1.6 Ma. Full northwest Australian biogeographic connectivity with the WPWP from 1.6 to 0.8 Ma suggests an unrestricted stronger ITF (compared to today) and the initiation of the modern Leeuwin Current. The extinction of some Indo-Pacific species in northwest Australia after 0.8 Ma may be related to the effects of large glacial/interglacial oscillations and uplift of the Indonesian Archipelago causing Indonesian seaway restriction.