989 resultados para Rockwell hardness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 W negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer films, deposited from acetylene and argon plasma mixtures, were bombarded with 150 keV He+ ions, varying the fluence, Phi, from 10(18) to 10(21) ions/m(2). Molecular structure and optical gap of the samples were investigated by infrared and ultraviolet-visible spectroscopies, respectively. Two-point probe was employed to determine the electrical resistivity while hardness was measured by nanoindentation technique. It was verified modification of the molecular structure and composition of the films. There was loss of H and increment in the concentration of unsaturated carbon bonds with Phi. Optical gap and electrical resistivity decreased while hardness increased with Phi. Interpretation of these results is proposed in terms of chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surfaces of silicon wafers implanted with N and C, respectively, and aluminum 5052 implanted with N alone by plasma immersion ion implantation WHO were probed by a nanoindentor and analyzed by the contact-angle method to provide information on surface nanohardness and wettability. Silicon nitride and silicon carbide are important ceramic materials for microelectronics, especially for high-temperature applications. These compounds can be synthesized by high-dose ion implantation. The nanohardness of a silicon sample implanted with 12-keV nitrogen PIII (with 3 X 10(17) cm(-2) dose) increased by 10% compared to the unimplanted sample, in layers deeper than the regions where the formation of the Si,N, compound occurred. A factor of 2.5 increase in hardness was obtained for C-implanted Si wafer at 35 keV (with 6 X 10(17) cm(-2) dose), again deeper than the SiC-rich layer, Both compounds are in the amorphous state and their hardness is much lower than that of the crystalline compounds, which require an annealing process after ion implantation. In the same targets, the contact angle increased by 65% and 35% for N- and C-implanted samples, respectively. Compared to the Si target, the nitrogen PIII-irradiated Al 5052 (wish 15 keV) showed negligible change in its hydrophobic character after ion implantation. Its near-surface nanohardness measurement showed a slight increase for doses of 1 X 10(17) cm(-2). We have been searching for an AlN layer of the order of 1000 A thick, using such a low-energy PIII process, but oxide formation during processing has precluded its synthesis. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of nanohardness measurements at a film surface and film-substrate interface are presented and discussed. An electron beam device was used to deposit a Ti film on a 304 stainless steel (304 SS) substrate. The diluted interface was obtained by thermal activated atomic diffusion. The. Ti film and Ti film-304 SS interface were analyzed by energy dispersive spectrometry and were observed using atomic force microscopy. The nanohardness of the Ti film-304 SS system was measured by a nanoindentation technique. The results showed the Ti film-304 SS interface had a higher hardness value than the Ti film and 304 SS substrate. The Ti film surface had a lower hardness due to the presence of a TiO2 thin layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benzene plasma polymer films were bombarded with Ar ions by plasma immersion ion implantation. The treatments were performed using argon pressure of 3 Pa and 70 W of applied power. The substrate holder was polarized with high voltage negative pulses (25 kV, 3 Hz). Exposure time to the immersion plasma, t, was varied from 0 to 9000 s. Optical gap and chemical composition of the samples were determined by ultraviolet-visible and Rutherford backscattering spectroscopies, respectively. Film wettability was investigated by the contact angle between a water drop and the film surface. Nanoindentation technique was employed in the hardness measurements. It was observed growth in carbon and oxygen concentrations while there was decrease in the concentration of H atoms with increasing t. Furthermore, film hardness and wettability increased and the optical gap decreased with t. Interpretation of these results is proposed in terms of the chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical corrosion measurements of AISI H13 steel treated by Pill process in 3.5% (wt) NaCl solution were investigated. So far the corrosion behavior of AISI H 13 steel by Pill has not been studied. The electrochemical results are correlated with the surface morphology, nitrogen content and hardness of the nitride layer. Ion implantation of nitrogen into H 13 steel was carried out by Pill technique. SEM examination revealed a generalized corrosion and porosity over all analyzed sample surfaces. Penetration of nitrogen reaching more than 20 gm was achieved at 450 degrees C and hardness as high as 1340 HV (factor of 2.7 enhancement over standard tempered and annealed H 13) was reached by a high power, 9 h Pill treatment. The corrosion behavior of the samples was studied by potentiodynamic polarization method. The noblest corrosion behavior was observed for the samples treated by PIII at 450 degrees C, during 9 h. Anodic branches of polarization curves of PIII processed samples show a passive region associated with the formation of a protective film. The passive region current density of PIII treated H13 samples (3.5 x 10(-6) A/cm(2)) is about 270 times lower than the one of untreated specimens, which demonstrates the higher corrosion resistance for the Pill treated H 13 samples. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the effect of nitrogen Plasma Immersion Ion Implantation (PIII) on chemical structure, refraction index and surface hardness of plasma-polymerized hexamethyldisilazane (PPHMDSN) thin films. Firstly, polymeric films were deposited at 13.56 MHz radiofrequency (RF) Plasma Enhanced Chemical Vapour Deposition (PECVD) and then, were treated by nitrogen PIII from 15 to 60 min. Fourier Transformed Infrared (FTIR) spectroscopy was employed to analyse the molecular structure of the samples, and it revealed that vibrations modes at 3350 cm(-1), 2960 cm(-1), 1650 cm(-1), 1250 cm(-1) and 1050 cm(-1) were altered by nitrogen PIII. Visible-ultraviolet (vis-UV) spectroscopy was used to evaluate film refractive index and the results showed a slight increase from 1.6 to 1.8 following the implantation time. Nanoindentation revealed a surface hardness rise from 0.5 to 2.3 GPa as PIII treatment time increased. These results indicate nitrogen PIII is very promising in improving optical and mechanical properties of PPHMDSN films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was performed to verify the chemical structure, mechanical and hydrophilic properties of amorphous hydrogenated carbon films prepared by plasma enhanced chemical vapor deposition, using acetylene/argon mixture as monomer. Films were prepared in a cylindrical quartz reactor, fed by 13.56 MHz radiofrequency. The films were grown during 5 min, for power varying from 25 to 125 W at a fixed pressure of 9.5 Pa. After deposition, all samples were treated by SF(6) plasma with the aim of changing their hydrophilic character. Film chemical structure investigated by Raman spectroscopy, revealed the increase of sp(3) hybridized carbon bonds as the plasma power increases. Hardness measurements performed by the nanoindentation technique showed an improvement from 5 GPa to 14 GPa following the increase discharge power. The untreated films presented a hydrophilic character, which slightly diminished after SF(6) plasma treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Residual stresses play an important role in the fatigue lives of structural engineering components. In the case of near surface tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. In both decorative and functional applications, chromium electroplating results in excellent wear and corrosion resistance. However, it is well known that it reduces the fatigue strength of a component. This is due to high tensile internal stresses and microcrack density. Efforts to improve hard chromium properties have increased in recent years. In this study, the effect of a nickel layer sulphamate process, as simple layer and interlayer, on fatigue strength of hard chromium electroplated AISI 4340 steel hardness - HRc 53, was analysed. The analysis was performed by rotating bending fatigue tests on AISI 4340 steel specimens with the following experimental groups: base material, hard chromium electroplated, sulphamate nickel electroplated, sulphamate nickel interlayer on hard chromium electroplated and electroless nickel interlayer on hard chromium electroplated. Results showed a decrease in fatigue strength in coated specimens and that both nickel plating interlayers were responsible for the increase in fatigue life of AISI 4340 chromium electroplated steel. The shot peening pre-treatment was efficient in reducing fatigue loss in the alternatives studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives The purpose of this work was to submit the Nitinol files to plasma immersion ion implantation (PIII) and evaluate the effects of the surface treatment. Materials and Methods Wear resistance was determined in vitro by using an equipment for the application of horizontal movements on previously prepared notched plates made of resin. Vickers microhardness was measured in plates and files, before and after surface treatment and the surface chemical composition of the instruments was determined by X-rays photoelectron spectroscopy. Results The hardness values found for the treated Nitinol files were significantly lower than the hardness values measured before the implantation process. The comparison of commercially available instruments shows that the wear resistance of the stainless steel file is higher than the resistance of the Nitinol. Conclusions The results found led to the conclusion that the surface treatment significantly increased the Nitinol files wear resistance.