979 resultados para Random telegraph noise (RTN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aims at accounting for swirling mean flow effects on rotor trailing-edge noise. Indeed, the mean flow in between the rotor and the stator of the fan or of a compressor stage is highly swirling. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces and of Goldstein's acoustic analogy in a circular duct with uniform mean flow to a swirling mean flow in an annular duct is introduced. It is first applied to tonal noise. In most cases, the swirl modifies the pressure distribution downstream of the fan. In several configurations, when the swirl is rather close to a solid body swirl, it is often sufficient to apply a simple Doppler effect correction when predicting the duct modes in uniform mean flow in order to predict accurately the noise radiated with swirl. However, in other realistic configurations, the swirling mean-flow effect cannot be addressed using this simple Doppler effect correction. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling and sheared mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has an effect. In some cases the a simple Doppler effect may address it, but, in other realistic configurations our acoustic analogy with swirl is needed. © 2012 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of random dynamic systems usually requires the definition of an ensemble of structures and the solution of the eigenproblem for each member of the ensemble. If the process is carried out using a conventional numerical approach, the computational cost becomes prohibitive for complex systems. In this work, an alternative numerical method is proposed. The results for the response statistics are compared with values obtained from a detailed stochastic FE analysis of plates. The proposed method seems to capture the statistical behaviour of the response with a reduced computational cost.